茶叶科学 ›› 2023, Vol. 43 ›› Issue (4): 447-459.doi: 10.13305/j.cnki.jts.2023.04.001
• 综述 • 下一篇
李焱1, 林泳峰1, 刘文美2,3,4, 邹泽华2,3,4, 刘光明1, 刘庆梅1,*
收稿日期:
2023-05-09
修回日期:
2023-06-24
出版日期:
2023-08-15
发布日期:
2023-08-24
通讯作者:
*liuqingmei1229@163.com
作者简介:
李焱,女,硕士研究生,主要从事茶多糖免疫调节活性方面研究,676292470@qq.com。
基金资助:
LI Yan1, LIN Yongfeng1, LIU Wenmei2,3,4, ZOU Zehua2,3,4, LIU Guangming1, LIU Qingmei1,*
Received:
2023-05-09
Revised:
2023-06-24
Online:
2023-08-15
Published:
2023-08-24
摘要: 茶多糖是茶叶中的重要活性成分,研究茶多糖的性质、推动茶多糖产品的开发将有利于茶产业及健康产业的发展。对Web of Science数据库中近十年茶多糖相关文献进行了可视化分析。结果显示,2013—2022年,茶多糖相关主题发文量总体呈增长趋势;关键词的共现、突现、频次分析结果均表明茶多糖的抗氧化性是持续的研究热点,这也可能是未来研究的主要趋势之一。当前,全球范围内茶多糖的研究主要集中在单糖组成、溶解性、乳化性等理化性质和抗氧化、抗肿瘤、抗糖尿病等生物活性方面。茶多糖虽具有多种生物活性,但相关的机理解析仍不够深入;最新研究表明茶多糖能够影响肠道菌群,具有良好的益生元潜力。另外,茶多糖相关产品的转化和开发尤为不足,研究者们未来可聚焦于利用茶多糖开发生物膜制品、药物递送产品及功能性食品等。总结茶多糖领域研究的主要内容和热点方向,旨在为该领域的研究者及茶多糖产业的发展提供参考。
中图分类号:
李焱, 林泳峰, 刘文美, 邹泽华, 刘光明, 刘庆梅. 茶多糖研究的现状与发展趋势[J]. 茶叶科学, 2023, 43(4): 447-459. doi: 10.13305/j.cnki.jts.2023.04.001.
LI Yan, LIN Yongfeng, LIU Wenmei, ZOU Zehua, LIU Guangming, LIU Qingmei. Present Status and Development Trends of Research on Tea Polysaccharides[J]. Journal of Tea Science, 2023, 43(4): 447-459. doi: 10.13305/j.cnki.jts.2023.04.001.
[1] 程利增, 朱将雄, 周慧, 等. 茶多糖提取纯化、结构活性及应用研究进展[J]. 中国茶叶, 2021, 43(8): 7-15. Cheng L Z, Zhu J X, Zhou H, et al.Research progress on the extraction, purification, structures, activities and application of tea polysaccharides[J]. China Tea, 2021, 43(8): 7-15. [2] 翁昆, 张亚丽. GB/T 30766—2014《茶叶分类》简介[J]. 中国标准导报, 2015(1): 34-35. Weng K, Zhang Y L.Introduction to GB/T 30766-2014 "Classification of Tea"[J]. China Quality and Standards Review, 2015(1): 34-35. [3] 欧阳建, 周方, 卢丹敏, 等. 茶多糖调控肥胖作用研究进展[J]. 茶叶科学, 2020, 40(5): 565-575. Ouyang J, Zhou F, Lu D M, et al.Research progress of tea polysaccharides in regulating obesity[J]. Journal of Tea Science, 2020, 40(5): 565-575. [4] Chen G, Yuan Q, Saeeduddin M, et al.Recent advances in tea polysaccharides: extraction, purification, physicochemical characterization and bioactivities[J]. Carbohydrate Polymers, 2016, 153: 663-678. [5] 翁蔚, 李书魁, 张琴梅, 等. 茶多糖的组成与保健功效研究进展[J]. 中华中医药杂志, 2021, 36(12): 7261-7264. Weng W, Li S K, Zhang Q M, et al.Research progress of composition and health function of tea polysaccharide[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2021, 36(12): 7261-7264. [6] 李东旭, 陈富桥. 基于CiteSpace文献计量分析的中国茶产业经济研究现状与展望[J]. 华中农业大学学报, 2022, 41(5): 57-67. Li D X, Chen F Q.Situation and prospect of studies on tea industry in China based on CiteSpace bibliometnic analysis[J]. Journal of Huazhong Agricultural University, 2022, 41(5): 57-67. [7] 张鑫, 王吉, 胡静荣, 等. 基于Citespace和文献计量分析平台的鱼糜研究可视化分析[J]. 食品科学, 2023, 44(1): 362-370. Zhang X, Wang J, Hu J R, et al.Visual analysis of surimi research based on Citespace and bibliometric analysis platform[J]. Food Science, 2023, 44(1): 362-370. [8] Sun Y Q, Wu S M, Gong G Y.Trends of research on polycyclic aromatic hydrocarbons in food: a 20-year perspective from 1997 to 2017[J]. Trends in Food Science & Technology, 2019, 83: 86-98. [9] Chen S Y, Han R, Liu H T.A bibliometric and visualization analysis of intermittent fasting[J]. Frontiers in Public Health, 2022, 10: 946795. doi: 10.3389/fpubh.2022.946795. [10] 陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253. Chen Y, Chen C M, Liu Z Y, et al.The methodology function of CiteSpace mapping knowledge domains[J]. Studies in Science of Science, 2015, 33(2): 242-253. [11] 周钰, 刘庆梅, 张军, 等. 基于Citespace对抗食物过敏研究领域的可视化分析[J]. 中国食品学报, 2021, 21(6): 366-374. Zhou Y, Liu Q M, Zhang J, et al.Visualization analysis of anti food allergy reasearch based on Citespace[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(6): 366-374. [12] 吴晓秋, 吕娜. 基于关键词共现频率的热点分析方法研究[J]. 情报理论与实践, 2012, 35(8): 115-119. Wu X Q, Lü N.Research on the hot spot analysis method based on keyword co occurrence frequency[J]. Information Studies: Theory & Application, 2012, 35(8): 115-119. [13] Li X, Chen S, Li J E, et al.Chemical composition and antioxidant activities of polysaccharides from [14] Guo L, Guo J C, Zhu W C, et al.Optimized synchronous extraction process of tea polyphenols and polysaccharides from Huaguoshan Yunwu tea and their antioxidant activities[J]. Food and Bioproducts Processing, 2016, 100: 303-310. [15] 穆军芳, 张丽鑫, 杨光. 基于WOS的国际农业生态学研究热点与前沿探究[J]. 中国生态农业学报(中英文), 2022: 1-12. [2023-05-09]. 基于WOS的国际农业生态学研究热点与前沿探究[J]. 中国生态农业学报(中英文), 2022: 1-12. [2023-05-09]. http://kns.cnki.net/kcms/detail/13.1432.S.20221228.1328.002.html. Mu J F, Zhang L X, Yang G, et al. A Study on the research hotspots and emerging trends of international agroecology based on WOS [J]. Chinese Journal of Eco-Agriculture, 2022: 1-12. [2023-05-09]. http://kns.cnki.net/kcms/detail/13.1432.S.20221228.1328.002.html. [16] Qu J L, Huang P, Zhang L, et al.Hepatoprotective effect of plant polysaccharides from natural resources: a review of the mechanisms and structure-activity relationship[J]. International Journal of Biological Macromolecules, 2020, 161: 24-34. [17] Xu Y L, Wang Y J, He J L, et al.Antibacterial properties of lactoferrin: a bibliometric analysis from 2000 to early 2022[J]. Frontiers in Microbiology, 2022, 13: 947102. doi: 10.3389/fmicb.2022.947102. [18] Chen G J, Zeng Z Q, Xie M H, et al.Fermentation characteristics and probiotic activity of a purified fraction of polysaccharides from Fuzhuan brick tea[J]. Food Science and Human Wellness, 2022, 11(3): 727-737. [19] Li H S, Fang Q Y, Nie Q X, et al.Hypoglycemic and hypolipidemic mechanism of tea polysaccharides on type 2 diabetic rats via gut microbiota and metabolism alteration[J]. Journal of Agricultural and Food Chemistry, 2020, 68(37): 10015-10028. [20] Liu X L, Hu G S, Wang A H, et al.Black tea reduces diet-induced obesity in mice via modulation of gut microbiota and gene expression in host tissues[J]. Nutrients, 2022, 14(8): 1635. doi: 10.3390/nu14081635. [21] Wang Y L, Zhao Y, Andrae-Marobela K, et al.Tea polysaccharides as food antioxidants: an old woman’s tale?[J]. Food Chemistry, 2013, 138(2/3): 1923-1927. [22] Lu X S, Zhao Y, Sun Y F, et al.Characterisation of polysaccharides from green tea of Huangshan Maofeng with antioxidant and hepatoprotective effects[J]. Food Chemistry, 2013, 141(4): 3415-3423. [23] Xu P, Wu J, Zhang Y, et al.Physicochemical characterization of puerh tea polysaccharides and their antioxidant and [24] Chen G J, Xie M H, Wan P, et al.Digestion under saliva, simulated gastric and small intestinal conditions and fermentation [25] Chen D, Chen G J, Ding Y, et al.Polysaccharides from the flowers of tea ( [26] Wu D T, Liu W, Yuan Q, et al.Dynamic variations in physicochemical characteristics of oolong tea polysaccharides during simulated digestion and fecal fermentation [27] Chen H, Huang Y Z, Zhou C C, et al.Effects of ultra-high pressure treatment on structure and bioactivity of polysaccharides from large leaf yellow tea[J]. Food Chemistry, 2022, 387: 132862. doi: 10.1016/j.foodchem.2022.132862. [28] Jin F, Jia L Y, Tu Y Y.Structural analysis of an acidic polysaccharide isolated from white tea[J]. Food Science and Biotechnology, 2015, 24(5): 1623-1628. [29] Nie S P, Xie M Y.A review on the isolation and structure of tea polysaccharides and their bioactivities[J]. Food Hydrocolloids, 2011, 25(2): 144-149. [30] Wang Q, Yang X Y, Zhu C W, et al.Advances in the utilization of tea polysaccharides: preparation, physicochemical properties, and health benefits[J]. Polymers, 2022, 14(14): 2775. doi: 10.3390/polym14142775. [31] Xu A A, Lai W Y, Chen P, et al.A comprehensive review on polysaccharide conjugates derived from tea leaves: composition, structure, function and application[J]. Trends in Food Science & Technology, 2021, 114: 83-99. [32] Qin H N, Huang L, Teng J W, et al.Purification, characterization, and bioactivity of Liupao tea polysaccharides before and after fermentation[J]. Food Chemistry, 2021, 353: 129419. doi: 10.1016/j.foodchem.2021.129419. [33] Xiang G, Sun H P, Chen Y Y, et al.Antioxidant and hypoglycemic activity of tea polysaccharides with different degrees of fermentation[J]. International Journal of Biological Macromolecules, 2023, 228: 224-233. [34] Sun X Y, Wang J M, Ouyang J, et al.Antioxidant activities and repair effects on oxidatively damaged HK-2 cells of tea polysaccharides with different molecular weights[J]. Oxidative Medicine and Cellular Longevity, 2018, 2018: 5297539. doi: 10.1155/2018/5297539. [35] Zhang X, Chen H X, Zhang N, et al.Extrusion treatment for improved physicochemical and antioxidant properties of high-molecular weight polysaccharides isolated from coarse tea[J]. Food Research International, 2013, 53(2): 726-731. [36] Wang Y F, Mao F F, Wei X L.Characterization and antioxidant activities of polysaccharides from leaves, flowers and seeds of green tea[J]. Carbohydrate Polymers, 2012, 88(1): 146-153. [37] Zhu J X, Yu C, Han Z, et al.Comparative analysis of existence form for selenium and structural characteristics in artificial selenium-enriched and synthetic selenized green tea polysaccharides[J]. International Journal of Biological Macromolecules, 2020, 154: 1408-1418. [38] Junker F, Michalski K, Guthausen G, et al.Characterization of covalent, feruloylated polysaccharide gels by pulsed field gradient-stimulated echo (PFG-STE)-NMR[J]. Carbohydrate Polymers, 2021, 267: 118232. doi: 10.1016/j.carbpol.2021.118232. [39] Wang J Y, Liu W, Chen Z Q, et al.Physicochemical characterization of the oolong tea polysaccharides with high molecular weight and their synergistic effects in combination with polyphenols on hepatocellular carcinoma[J]. Biomedicine & Pharmacotherapy, 2017, 90: 160-170. [40] Chen X Q, Wu X F, Zhang K, et al.Purification, characterization, and emulsification stability of high- and low-molecular-weight fractions of polysaccharide conjugates extracted from green tea[J]. Food Hydrocolloids, 2022, 129: 107667. doi: 10.1016/j.foodhyd.2022.107667. [41] Li Q, Zhao T T, Shi J L, et al.Physicochemical characterization, emulsifying and antioxidant properties of the polysaccharide conjugates from Chin brick tea ( [42] Li W, Wang K Q, Sun Y, et al.Influences of structures of galactooligosaccharides and fructooligosaccharides on the fermentation [43] Chen H X, Qu Z S, Fu L L, et al.Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea[J]. Journal of Food Science, 2009, 74(6): 469-474. [44] Hu T, Wu P, Zhan J F, et al.Structure variety and its potential effects on biological activity of tea polysaccharides[J]. Food Science and Human Wellness, 2022, 11(3): 587-597. [45] Chen H X, Wang Z S, Qu Z S, et al.Physicochemical characterization and antioxidant activity of a polysaccharide isolated from oolong tea[J]. European Food Research and Technology, 2009, 229(4): 629-635. [46] Yang X H, Huang M J, Qin C Q, et al.Structural characterization and evaluation of the antioxidant activities of polysaccharides extracted from Qingzhuan brick tea[J]. International Journal of Biological Macromolecules, 2017, 101: 768-775. [47] Chen G J, Wang M J, Xie M H, et al.Evaluation of chemical property, cytotoxicity and antioxidant activity [48] Wang H S, Chen J R, Ren P F, et al.Ultrasound irradiation alters the spatial structure and improves the antioxidant activity of the yellow tea polysaccharide[J]. Ultrasonics Sonochemistry, 2021, 70: 105355. doi: 10.1016/j.ultsonch.2020.105355. [49] Zheng Q R, Li W F, Zhang H, et al.Optimizing synchronous extraction and antioxidant activity evaluation of polyphenols and polysaccharides from Ya'an Tibetan tea ( [50] Xu P, Chen H, Wang Y Q, et al.Oral administration of puerh tea polysaccharides lowers blood glucose levels and enhances antioxidant status in alloxan-induced diabetic mice[J]. Journal of Food Science, 2012, 77(11): 246-252. [51] Guo R, Zhang J A, Liu X, et al.Pectic polysaccharides from Biluochun tea: a comparative study in macromolecular characteristics, fine structures and radical scavenging activities [52] Tang Y Y, Sheng J F, He X M, et al.Novel antioxidant and hypoglycemic water-soluble polysaccharides from jasmine tea[J]. Foods, 2021, 10(10): 2375. doi: 10.3390/foods10102375. [53] Fan M H, Zhu J X, Qian Y L, et al.Effect of purity of tea polysaccharides on its antioxidant and hypoglycemic activities[J]. Journal of Food Biochemistry, 2020, 44(8): e13277. doi: 10.1111/jfbc.13277. [54] Liu L Q, Li H S, Nie S P, et al.Tea polysaccharide prevents colitis-associated carcinogenesis in mice by inhibiting the proliferation and invasion of tumor cells[J]. International Journal of Molecular Sciences, 2018, 19(2): 506. doi: 10.3390/ijms19020506. [55] Wang Y C, Chen J, Zhang D Z, et al.Tumoricidal effects of a selenium (Se)-polysaccharide from Ziyang green tea on human osteosarcoma U-2 OS cells[J]. Carbohydrate Polymers, 2013, 98(1): 1186-1190. [56] Wang H J, Shi S S, Bao B, et al.Structure characterization of an arabinogalactan from green tea and its anti-diabetic effect[J]. Carbohydrate Polymers, 2015, 124: 98-108. [57] Li S Q, Chen H X, Wang J, et al.Involvement of the PI3K/Akt signal pathway in the hypoglycemic effects of tea polysaccharides on diabetic mice[J]. International Journal of Biological Macromolecules, 2015, 81: 967-974. [58] Chung J O, Yoo S H, Lee Y E, et al.Hypoglycemic potential of whole green tea: water-soluble green tea polysaccharides combined with green tea extract delays digestibility and intestinal glucose transport of rice starch[J]. Food & Function, 2019, 10(2): 746-753. [59] Zhao Y N, Chen H, Li W T, et al.Selenium-containing tea polysaccharides ameliorate DSS-induced ulcerative colitis via enhancing the intestinal barrier and regulating the gut microbiota[J]. International Journal of Biological Macromolecules, 2022, 209: 356-366. [60] Kim J, Choi H, Choi D H, et al.Application of green tea catechins, polysaccharides, and flavonol prevent fine dust induced bronchial damage by modulating inflammation and airway cilia[J]. Scientific Reports, 2021, 11(1): 2232. doi: 10.1038/s41598-021-81989-9. [61] Liu L Q, Nie S P, Shen M Y, et al.Tea polysaccharides inhibit colitis-associated colorectal cancer via interleukin-6/STAT3 pathway[J]. Journal of Agricultural and Food Chemistry, 2018, 66(17): 4384-4393. [62] Cheng L Z, Chen L, Yang Q Q, et al.Antitumor activity of Se-containing tea polysaccharides against sarcoma 180 and comparison with regular tea polysaccharides and Se-yeast[J]. International Journal of Biological Macromolecules, 2018, 120: 853-858. [63] 王兆梅, 李琳, 郭祀远, 等. 活性多糖构效关系研究评述[J]. 现代化工, 2002(8): 18-21, 23. Wang Z M, Li L, Guo S Y, et al.Review on structure-activity relationship of active polysaccharides[J]. Modern Chemical Industry, 2002(8): 18-21, 23. [64] 杨玉洁, 刘静宜, 谭艳, 等. 多糖降血糖活性构效关系及作用机制研究进展[J]. 食品科学, 2021, 42(23): 355-363. Yang Y J, Liu J Y, Tan Y, et al.Progress inunderstanding the structure-activity relationship and hypaglycemic mechanism of polysaccharides[J]. Food Science, 2021, 42(23): 355-363. [65] Wang D Y, Zhao Y, Sun Y F, et al.Protective effects of Ziyang tea polysaccharides on CCl4-induced oxidative liver damage in mice[J]. Food Chemistry, 2014, 143: 371-378. [66] 倪德江, 陈玉琼, 宋春和, 等. 乌龙茶多糖对糖尿病大鼠肝肾抗氧化功能及组织形态的影响[J]. 茶叶科学, 2003, 23(1): 11-15. Ni D J, Chen Y Q, Song C H, et al.Effect of oolong tea polysaccharide on hepatic-nephritic antioxidation and histomorphology in the diabetic rats[J]. Journal of Tea Science, 2003, 23(1): 11-15. [67] 江和源. 茶叶降血糖活性及对糖尿病的功效与机理[J]. 中国茶叶, 2019, 41(2): 1-6. Jiang H Y.Hypoglycemic activity of tea and its effect and mechanism on diabetes[J]. China Tea, 2019, 41(2): 1-6. [68] Monobe M N M, Ema K, Kato F M K, et al. Immunostimulating activity of a crude polysaccharide derived from green tea ( [69] Yuan C F, Li Z H, Peng F, et al.Combination of selenium-enriched green tea polysaccharides and Huo-ji polysaccharides synergistically enhances antioxidant and immune activity in mice[J]. Journal of the Science of Food and Agriculture, 2015, 95(15): 3211-3217. [70] Chen X Q, Zhang Z F, Gao Z M, et al.Physicochemical properties and cell-based bioactivity of Pu’erh tea polysaccharide conjugates[J]. International Journal of Biological Macromolecules, 2017, 104: 1294-1301. [71] Ho Do M, Seo Y S, Park H Y.Polysaccharides: bowel health and gut microbiota[J]. Critical Reviews in Food Science and Nutrition, 2021, 61(7): 1212-1224. [72] Chen G J, Wang M J, Zeng Z Q, et al.Fuzhuan brick tea polysaccharides serve as a promising candidate for remodeling the gut microbiota from colitis subjects [73] Li N, Zhou S Y, Yang X B, et al.Applications of natural polysaccharide-based pH-sensitive films in food packaging: current research and future trends[J]. Innovative Food Science & Emerging Technologies, 2022, 82(1): 103200. doi: 10.1016/j.ifset.2022.103200. [74] Shahidi F, Hossain A.Preservation of aquatic food using edible films and coatings containing essential oils: a review[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(1): 66-105. [75] Azeredo H M C, Waldron K W. Crosslinking in polysaccharide and protein films and coatings for food contact: a review[J]. Trends in Food Science & Technology, 2016, 52: 109-122. [76] Shao P, Feng J R, Sun P L, et al.Recent advances in improving stability of food emulsion by plant polysaccharides[J]. Food Research International, 2020, 137: 109376. doi: 10.1016/j.foodres.2020.109376. [77] Tang Q L, Huang G L.Improving method, properties and application of polysaccharide as emulsifier[J]. Food Chemistry, 2022, 376: 131937. doi: 10.1016/j.foodchem.2021.131937. [78] Li S Q, Wang X M, Li W W, et al.Preparation and characterization of a novel conformed bipolymer paclitaxel-nanoparticle using tea polysaccharides and zein[J]. Carbohydrate Polymers, 2016, 146: 52-57. [79] Fan M H, Zhang X, Zhao Y, et al.Mn(II)-mediated self-assembly of tea polysaccharide nanoparticles and their functional role in mice with type 2 diabetes[J]. ACS Applied Materials & Interfaces, 2022, 14(27): 30607-30617. [80] Albuquerque P B S, De Oliveira W F, Dos Santos Silva P M, et al. Skincare application of medicinal plant polysaccharides: a review[J]. Carbohydrate Polymers, 2022, 277: 118824. doi: 10.1016/j.carbpol.2021.118824. [81] 李焱, 林泳峰, 刘文美, 等. 食药同源植物多糖调控肠道稳态的研究进展[J]. 食品安全质量检测学报, 2023, 14(2): 25-33. Li Y, Lin Y F, Liu W M, et al.Research progress on regulating intestinal steady-state of polysaccharides from food-medicine homologous plants[J]. Journal of Food Safety and Quality, 2023, 14(2): 25-33. [82] Chen X Q, Han Y, Meng H, et al.Characteristics of the emulsion stabilized by polysaccharide conjugates alkali-extracted from green tea residue and its protective effect on catechins[J]. Industrial Crops and Products, 2019, 140: 111611. doi: 10.1016/j.indcrop.2019.111611. [83] Chen X Q, Zhang Y T, Han Y, et al.Emulsifying properties of polysaccharide conjugates prepared from chin-brick tea[J]. Journal of Agricultural and Food Chemistry, 2019, 67(36): 10165-10173. [84] Wang C, Fu Y X, Cao Y, et al.Enhancement of lycopene bioaccessibility in tomatoes using excipient emulsions: effect of dark tea polysaccharides[J]. Food Research International, 2023, 163: 112123. doi: 10.1016/j.foodres.2022.112123. [85] Lin X R, Mu J J, Chen Z Z, et al.Stabilization and functionalization of selenium nanoparticles mediated by green tea and Pu-erh tea polysaccharides[J]. Industrial Crops and Products, 2023, 194: 116312. doi: 10.1016/j.indcrop.2023.116312. [86] Wu S Y, Li N, Yang C, et al.Synthesis of cationic branched tea polysaccharide derivatives for targeted delivery of siRNA to hepatocytes[J]. International Journal of Biological Macromolecules, 2018, 118: 808-815. |
[1] | 龚明秀, 袁懿炜, 张一帆, 叶江成, 郭丽, 李晓军, 黄皓, 毛宇骁, 赵芸, 赵进. 鸠坑龙井茶对高脂饮食C57BL/6小鼠肝脂肪变性SREBPs通路信号的影响及肠道菌群调节作用研究[J]. 茶叶科学, 2023, 43(4): 576-592. |
[2] | 陈薛, 左欣欣, 徐安安, 徐平, 王岳飞. 不同茶树品种鲜叶多糖的理化性质和抗氧化活性比较研究[J]. 茶叶科学, 2022, 42(6): 806-818. |
[3] | 孙颖, 陈鑫, 杨华, 应剑, 邵丹青, 吕晓华, 肖杰, 陈志雄, 李颂, 覃俊杰, 郑斌, 高建设. 饮用金花香橼茶3个月对小样本高脂血症人群糖脂代谢的改善效果研究[J]. 茶叶科学, 2022, 42(4): 561-576. |
[4] | 张旖旎, 吉铮. 表没食子儿茶素没食子酸酯(EGCG)研究的文献计量分析[J]. 茶叶科学, 2022, 42(3): 423-434. |
[5] | 杨高中, 彭群华, 张悦, 施江, 林智, 吕海鹏. 厌氧处理对不同类型茶叶的氨基酸组成及生物活性的影响[J]. 茶叶科学, 2022, 42(2): 222-232. |
[6] | 马冰凇, 王佳菜, 徐成成, 任小盈, 马存强, 周斌星. 不同仓储期普洱茶(生茶)中酚类成分差异及其对体外抗氧化能力的影响[J]. 茶叶科学, 2022, 42(1): 51-62. |
[7] | 代昕玥, 葛炳钢, 张旭雯, 刘文武, 段继春, 傅冬和. 茯砖茶改善2型糖尿病小鼠代谢紊乱的效果研究[J]. 茶叶科学, 2022, 42(1): 63-75. |
[8] | 周婷婷, 陈桂婷, 曹楠, 何建刚, 何功威, 肖长义, 李世刚. 从肠道菌群改变探讨青砖茶对非酒精性脂肪肝的预防作用[J]. 茶叶科学, 2021, 41(5): 669-680. |
[9] | 焦海珍, 邵陈禹, 陈建姣, 张晨禹, 陈佳豪, 李云飞, 沈程文. 重度遮阴及复光条件下茶树根系的生理响应及抗氧化酶活性动态变化[J]. 茶叶科学, 2021, 41(5): 695-704. |
[10] | 欧阳建, 周方, 卢丹敏, 李秀平, 黄建安, 刘仲华. 茶多糖调控肥胖作用研究进展[J]. 茶叶科学, 2020, 40(5): 565-575. |
[11] | 周方, 欧阳建, 黄建安, 刘仲华. 茶多酚对肠道微生物的调节作用研究进展[J]. 茶叶科学, 2019, 39(6): 619-630. |
[12] | 刘丹奇, 任发政, 李景明, 侯彩云. 几种茶多糖降血糖活性的研究[J]. 茶叶科学, 2019, 39(6): 652-660. |
[13] | 曾琪, 任发政, 雷新根, 侯彩云. 白茶体外抗氧化与体内抗衰老作用的研究[J]. 茶叶科学, 2018, 38(6): 615-624. |
[14] | 魏吉鹏, 李鑫, 王朝阳, 李洋, 张兰, 沈晨, 颜鹏, 张丽平, 韩文炎. 外源水杨酸甲酯对高温胁迫下茶树光合作用和抗氧化酶的影响[J]. 茶叶科学, 2018, 38(4): 353-362. |
[15] | 吴根梁, 侯爱香, 李珂, 李宗军. 陈年茯砖茶多酚类对老年人肠道菌群的影响研究[J]. 茶叶科学, 2018, 38(3): 319-330. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|