[1] Zeng L T, Watanabe N H R, Yang Z Y. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(14): 2321-2334. [2] Jogawat A, Yadav B, Chhaya, et al. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: a review[J]. Physiologia Plantarum, 2021, 172(2): 1106-1132. [3] Bittner A, Ciesla A, Gruden K, et al.Organelles and phytohormones: a network of interactions in plant stress responses[J]. Journal of Experimental Botany, 2022, 73(21): 7165-7181. [4] Li H, Teng R M, Liu J X, et al.Identification and analysis of genes involved in auxin, abscisic acid, gibberellin, and brassinosteroid metabolisms under drought stress in tender shoots of tea plants[J]. DNA and Cell Biology, 2019, 38(11): 1292-1302. [5] 岳川, 曾建明, 章志芳, 等. 茶树中植物激素研究进展[J]. 茶叶科学, 2012, 32(5): 382-392. Yue C, Zeng J M, Zhang Z F, et al.Research progress in the phytohormone of tea plant (Camellia sinensis)[J]. Journal of Tea Science, 2012, 32(5): 382-392. [6] 李梦菡, 吉艳艳, 张丽平, 等. 植物激素在茶树应对非生物逆境中的作用研究进展[J]. 中国茶叶, 2022, 44(10): 8-15. Li M H, Ji Y Y, Zhang L P, et al.Research progress on the role of plant hormones in tea plant coping with abiotic stress[J]. China Tea, 2022, 44(10): 8-15. [7] Gai Z S, Wang Y, Ding Y Q, et al.Exogenous abscisic acid induces the lipid and flavonoid metabolism of tea plants under drought stress[J]. Scientific Reports, 2020, 10(1): 12275. doi: 10.1038/s41598-020-69080-1. [8] 周琳, 徐辉, 朱旭君, 等. 脱落酸对干旱胁迫下茶树生理特性的影响[J]. 茶叶科学, 2014, 34(5): 473-480. Zhou L, Xu H, Zhu X J, et al.Effect of abscisic acid on physiological characteristics of tea plant under drought stress[J]. Journal of Tea Science, 2014, 34(5): 473-480. [9] Liu S C, Jin J Q, Ma J Q, et al.Transcriptomic analysis of tea plant responding to drought stress and recovery[J]. Plos One, 2016, 11(1): e0147306. doi: 10.1371/journal.pone.0147306. [10] 王莹, 李岩, 王姝, 等. 低温胁迫下贵州云雾贡茶生长调节剂的变化[J]. 湖北农业科学, 2020, 59(8): 99-102. Wang Y, Li Y, Wang S, et al.Changes of growth regulators of Camellia sinensis (L.) Kuntze var. niaowangensis Q. H. Chen under low temperature stress in Guizhou[J]. Hubei Agricultural Sciences, 2020, 59(8): 99-102. [11] Shen J Z, Zou Z W, Xing H Q, et al.Genome-wide analysis reveals stress and hormone responsive patterns of JAZ family genes in Camellia sinensis[J]. International Journal of Molecular Sciences, 2020, 21(7): 2433. doi: 10.3390/ijms21072433. [12] Li X, Ahammed G J, Zhang X N, et al.Melatonin-mediated regulation of anthocyanin biosynthesis and antioxidant defense confer tolerance to arsenic stress in Camellia sinensis L[J]. Journal of Hazardous Materials, 2021, 403: 123922. doi: 10.1016/j.jhazmat.2020.123922. [13] 曾光辉, 马青平, 王伟东, 等. 自然低温对茶树内源激素含量的影响[J]. 茶叶科学, 2016, 36(1): 85-91. Zeng G H, Ma Q P, Wang W D.et al.Effect of natural low-temperature on endogenous hormones of Camellia sinensis (L.) Kuntze plant[J]. Journal of Tea Science, 2016, 36(1): 85-91. [14] Wei C L, Yang H, Wang S B, et al.Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. PNAS, 2018, 115(18): E4151-E4158. [15] 徐媛. 干旱胁迫下花生转录组与小RNA测序及相关基因的表达分析[D]. 桂林: 广西师范大学, 2020. Xu Y.Sequencing of transcriptome and small RNA and expression analysis of related genes in peanut under drought stress [D]. Guilin: Guangxi Normal University, 2020. [16] Li Y, Wang Y P, Tan S T, et al.Root growth adaptation is mediated by PYLs ABA receptor-PP2A potein phosphatase complex[J]. Advanced Science, 2020, 7(3): 1901455. doi: 10.1002/advs.201901455. [17] Shen Z, Zhang Y H, Zhang L, et al.Changes in the distribution of endogenous hormones in Phyllostachys edulis 'Pachyloen' during bamboo shooting[J]. Plos One, 2020, 15(12): e0241806. doi: 10.1371/journal.pone.0241806. [18] Wang H Y, Cui K, He C Y, et al.Endogenous hormonal equilibrium linked to bamboo culm development[J]. Genetics and Molecular Research, 2015, 14(3): 11312-11323. [19] 陈博雯, 覃子海, 张烨, 等. 干旱胁迫下澳洲茶树生理活性及内源激素动态变化研究[J]. 山东农业科学, 2019, 51(10): 55-59. Chen B W, Qin Z H, Zhang Y, et al.Dynamic changes of physiological activities and endogenous hormones in Melaleuca alternifolia under drought stress[J]. Shandong Agricultural Sciences, 2019, 51(10): 55-59. [20] 王得运, 刘培培, 陈云婷, 等. 干旱胁迫对栀子内源激素含量的影响[J]. 中国农业科技导报, 2021, 23(4): 58-63. Wang D Y, Liu P P, Chen Y T, et al.Effect of drought stress on endogenous hormone content of Gardenia jasminoides Ellis[J]. Journal of Agricultural Science and Technology, 2021, 23(4): 58-63. [21] 王日明, 熊兴耀. 高温胁迫对黑麦草生长及生理代谢的影响[J]. 草业学报, 2016, 25(8): 81-90. Wang R M, Xiong X Y.Effect of temperature stress on growth and metabolism in parennial ryegrass[J]. Acta Prataculturae Sinica, 2016, 25(8): 81-90. [22] 朱琨, 李波, 邬婷婷. 高温胁迫对苜蓿愈伤组织内源激素含量的影响[J]. 黑龙江畜牧兽医, 2021(12): 102-106. Zhu K, Li B, Wu T T.Effect of high temperature stress on endogenous hormone content in alfalfa callus[J]. Heilongjiang Animal Science and Veterinary Medicine, 2021(12): 102-106. [23] Liu X Z, Huang B R.Cytokinin effects on creeping bentgrass response to heat stress: II. Leaf senescence and antioxidant metabolism[J]. Crop Science, 2002, 42(2): 466-472. [24] Li S L, Li X N, Wei Z H, et al.ABA-mediated modulation of elevated CO2 on stomatal response to drought[J]. Current Opinion in Plant Biology, 2020, 56: 174-180. [25] Islam M R, 符冠富, 奉保华, 等. “稻清”减轻水稻穗期高温伤害的原因分析[J]. 中国稻米, 2018, 24(3): 21-24. Islam M R, Fu G F, Feng B H, et al.Physiological mechanisms involved in “Daoqing” alleviating the damage on rice under heat stress[J]. China Rice, 2018, 24(3): 21-24. [26] Xu P, Zhang X Y, Su H, et al.Genome-wide analysis of PYL-PP2C-SnRK2s family in Camellia sinensis[J]. Bioengineered, 2020, 11(1): 103-115. [27] Pei X X, Wang X Y, Fu G Y, et al.Identification and functional analysis of 9-cis-epoxy carotenoid dioxygenase (NCED) homologs in G. hirsutum[J]. International Journal of Biological Macromolecules, 2021, 182: 298-310. [28] Jahan A, Komatsu K, Wakida-Sekiya M, et al.Archetypal roles of an abscisic acid receptor in drought and sugar responses in liverworts[J]. Plant Physiology, 2019, 179(1): 317-328. [29] Nie X H, Zhao S Q, Hao Y Q, et al.Transcriptome analysis reveals key genes involved in the resistance to Cryphonectria parasitica during early disease development in Chinese chestnut[J]. BMC Plant Biology, 2023, 23(1): 79. doi: 10.1186/s12870-023-04072-7. [30] Zhao W C, Huang H, Wang J J, et al.Jasmonic acid enhances osmotic stress responses by MYC2-mediated inhibition of protein phosphatase 2C1 and response regulators 26 transcription factor in tomato[J]. Plant Journal, 2022, 113(3): 546-561. [31] Wang Y C, Xu H F, Liu W J, et al.Methyl jasmonate enhances apple' cold tolerance through the JAZ-MYC2 pathway[J]. Plant Cell Tissue and Organ Culture, 2019, 136(1): 75-84. [32] Thines B, Katsir L, Melotto M, et al.JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling[J]. Nature, 2007, 448(7154): 661-665. [33] Chico J M, Lechner E, Fernandez-Barbero G, et al.CUL3BPM E3 ubiquitin ligases regulate MYC2, MYC3, and MYC4 stability and JA responses[J]. PNAS, 2020, 117(11): 6205-6215. [34] Jung C, Zhao P Z, Seo J S, et al.PLANT U-BOX PROTEIN10 regulates MYC2 stability in arabidopsis[J]. Plant Cell, 2015, 27(7): 2016-2031. [35] Nakano M, Omae N, Tsuda K.Inter-organismal phytohormone networks in plant-microbe interactions[J]. Current Opinion in Plant Biology, 2022, 68: 102258. doi: 10.1016/j.pbi.2022.102258. |