[1] 李艳姣, 林春桃, 范水生, 等. 福建茶产业发展与供给侧结构性改革互动协调研究[J]. 农业展望, 2021, 17(9): 108-114. Li Y J, Lin C T, Fan S S, et al.Study on the interaction and coordination between tea industry development and supply-side structural reform in Fujian[J]. Agricultural Outlook, 2021, 17(9): 108-114. [2] 廖万有, 王宏树, 苏有键, 等. 我国茶园土壤的退化问题及其防治[C]//中国茶叶学会. 茶叶科技创新与产业发展学术研讨会论文集, 重庆: [出版者不详], 2009: 185-193. Liao W Y, Wang H S, Su Y J, et al.Soil degeneration and its prevention in Chinese tea gardens [C]//China Tea Science Society. Proceedings of the symposium on technological innovation and industrial development of tea. Chongqing: [s.n.], 2009: 185-193. [3] 史凡, 黄泓晶, 陈燕婷, 等. 间套作功能植物对茶园生态系统服务功能的影响[J]. 茶叶科学, 2022, 42(2): 151-168. Shi F, Huang H J, Chen Y T, et al.Effects of intercropping functional plants on the ecosystem functions and services in tea garden[J]. Journal of Tea Science, 2022, 42(2): 151-168. [4] 齐龙波, 周卫军, 郭海彦, 等. 覆盖和间作对亚热带红壤茶园土壤磷营养的影响[J]. 中国生态农业学报, 2008, 16(3): 593-597. Qi L B, Zhou W J, Guo H Y, et al.Phosphorus nutrient characteristics of tea plantation soils under rice-straw mulch and white-clover intercropping in hilly red-soils of South China[J]. Chinese Journal of Eco-Agriculture, 2008, 16(3): 593-597. [5] 宋莉, 廖万有, 王烨军, 等. 套种绿肥对茶园土壤理化性状的影响[J]. 土壤, 2016, 48(4): 675-679. Song L, Liao W Y, Wang Y J, et al.Effects of interplanting green manure on soil physico-chemical characters in tea plantation[J]. Soils, 2016, 48(4): 675-679. [6] 沈程文, 肖润林, 徐华勤. 覆盖与间作对亚热带丘陵区茶园土壤微生物量的影响[J]. 水土保持学报, 2006, 20(3): 141-144. Shen C W, Xiao R L, Xu H Q.Effects of cover and intercropping on soil microbial biomass of tea plantations in subtropical hilly region[J]. Journal of Soil and Water Conservation, 2006, 20(3): 141-144. [7] 徐华勤, 肖润林, 宋同清, 等. 稻草覆盖与间作三叶草对丘陵茶园土壤微生物群落功能的影响[J]. 生物多样性, 2008, 16(2): 166-174. Xu H Q, Xiao R L, Song T Q, et al.Effects of mulching and intercropping on the functional diversity of soil microbial communities in tea plantations[J]. Biodiversity Science, 2008, 16(2): 166-174. [8] 林黎. 草种组合套种对山地茶园土壤性状及茶叶品质的影响[J]. 茶叶学报, 2017, 58(4): 174-178. Lin L.Physiochemical properties of soil and quality of tea affected by combination inter-cropping in hilly tea plantation[J]. Acta Tea Sinica, 2017, 58(4): 174-178. [9] Li Y C, Li Z, Li Z W, et al.Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach[J]. Journal of Applied Microbiology, 2016, 121(3): 787-799. [10] 黄伟. 浅论食用菌返生态野生栽培[J]. 中国食用菌, 2008, 27(5): 33-34. Huang W.Superficial view on ecological wild cultivation of edible fungi[J]. Edible Fungi of China, 2008, 27(5): 33-34. [11] 蒋玉兰, 张海华, 潘俊娴, 等. 茶树和长根菇间作试验研究[J]. 中国食用菌, 2018, 37(6): 32-35, 39. Jiang Y L, Zhang H H, Pan J X, et al.Experiment study on intercropping of tea trees and Oudemansiella radicata[J]. Edible Fungi of China, 2018, 37(6): 32-35, 39. [12] 李艳春, 林忠宁, 陆烝, 等. 茶园间作灵芝对土壤细菌多样性和群落结构的影响[J]. 福建农业学报, 2019, 34(6): 690-696. Li Y C, Lin Z N, Lu Z, et al.Microbial diversity and structure in soil under tea bushes Ganoderma lucidum intercropping[J]. Fujian Journal of Agricultural Sciences, 2019, 34(6): 690-696. [13] 严丽君, 王普, 施启龙, 等. 动物食性分析在生态学中的应用研究进展——基于DNA宏条形码技术[J]. 生态学报, 2023, 43(8): 3007-3019. Yan L J, Wang P, Shi Q L, et al.Applications of animal diet analysis based on DNA metabarcoding in ecological research[J]. Acta Ecologica Sinica, 2023, 43(8): 3007-3019. [14] 李振武, 韩海东, 陈敏健, 等. 套种食用菌对茶园土壤和茶树生长的效应[J]. 福建农业学报, 2013, 28(11): 1088-1092. Li Z W, Han H D, Chen M J, et al.Effects of intercropping Stropharia Rugoso-annulata on tea garden soil and tea growth[J]. Fujian Journal of Agricultural Sciences, 2013, 28(11): 1088-1092. [15] Labouyrie M, Ballabio C, Romero F, et al.Patterns in soil microbial diversity across Europe[J]. Nature Communications, 2023, 14(1): 3311. doi: 10.1038/s41467-023-37937-4. [16] Saleem M, Hu J, Jousset A.More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health[J]. Annual Review of Ecology, Evolution, and Systematics, 2019, 50(1): 145-168. [17] 赵佳佳, 李季, 杜相革. 不同生产模式对土壤微生物种群数量的影响[J]. 华北农学报, 2011, 26(s1): 220-224. Zhao J J, Li J, Du X G.Dynamics of soil microbial community in the experiment of organic, green and conventional vegetable production systems[J]. Acta Agriculturae Boreali-Sinica, 2011, 26(s1): 220-224. [18] 林雁冰, 薛泉宏, 颜霞. 不同栽培模式下玉米根系对土壤微生物区系的影响[J]. 西北农林科技大学学报(自然科学版), 2008, 36(12): 101-107. Lin Y B, Xue Q H, Yan X.Effects of the maize root on soil microbial flora under different cultivation patterns[J]. Journal of Northwest A&F University (Natural Science Edition), 2008, 36(12): 101-107. [19] 傅海平, 周品谦, 王沅江, 等. 绿肥间作对茶树根际土壤真菌群落的影响[J]. 茶叶通讯, 2020, 47(3): 406-415. Fu H P, Zhou P Q, Wang Y J, et al.Effects of intercropping different green manures on fungal community characteristics in rhizosphere soil of tea plant[J]. Journal of Tea Communication, 2020, 47(3): 406-415. [20] Christopher W S, Anna R.Comment on “global diversity and geography of soil fungi”[J]. Science, 2015, 348(6242): 1438-1438. [21] Wei Z, Yu D.Analysis of the succession of structure of the bacteria community in soil from long-term continuous cotton cropping in Xinjiang using high-throughput sequencing[J]. Archives of Microbiology, 2018, 200(4): 653-662. [22] Zhang T, Wang N F, Liu H Y, et al.Soil pH is a key determinant of soil fungal community composition in the Ny-Ålesund region, Svalbard (High Arctic)[J]. Frontiers in Microbiology, 2016, 7: 227. doi: 10.3389/fmicb.2016.00227. [23] Lauber C L, Strickland M S, Bradford M A, et al.The influence of soil properties on the structure of bacterial and fungal communities across land-use types[J]. Soil Biology and Biochemistry, 2008, 40(9): 2407-2415. [24] Prakash J, Mishra S.Role of beneficial soil microbes in alleviating climatic stresses in plants [M]//Kumar A, Singh J, Ferreira L F R. Microbiome under changing climate: implications and solutions. Cambridge: Woodhead Publishing, 2022: 29-68. [25] Peroh D.Plant-associated fungal communities in the light of meta'omics[J]. Fungal Diversity, 2015, 75: 1-25. [26] Wang H Y, Guo S Y, Huang M R, et al.Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota[J]. Science China life Sciences, 2010, 53(10): 1163-1169. [27] Lynch M D J, Thorn R G. Diversity of Basidiomycetes in Michigan agricultural soils[J]. Applied and Environmental Microbiology, 2006, 72(11): 7050-7056. [28] Osorio N W, Habte M.Soil phosphate desorption induced by a phosphate-solubilizing fungus[J]. Communications in Soil Science & Plant Analysis, 2014, 45(4): 451-460. [29] 陈力力, 刘金, 李梦丹, 等. 水稻-油菜双序列复种免耕、翻耕土壤真菌多样性[J]. 激光生物学报, 2018, 27(1): 60-68, 59. Chen L L, Liu J, Li M D, et al.Diversity of filamentous fungus community in paddy fields with different tillage methods[J]. Acta Laser Biology Sinca, 2018, 27(1): 60-68, 59. [30] Zhang H, Wu X, Li G, et al.Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities[J]. Biology and Fertility of Soils, 2011, 47(5): 543-554. [31] Li F, Chen L, Redmile-Gordon M, et al.Mortierella elongata's roles in organic agriculture and crop growth promotion in a mineral soil[J]. Land Degradation and Development, 2018, 29(6): 1642-1651. [32] 林双双, 孙向伟, 王晓娟, 等. 我国菌根学研究进展及其应用展望[J]. 草业学报, 2013, 22(5): 310-325. Lin S S, Sun X W, Wang X J, et al.Mycorrhizal studies and their application prospects in China[J]. Acta Prataculturae Sinica, 2013, 22(5): 310-325. [33] Li S M, Fan W, Xu G, et al.Bio-organic fertilizers improve Dendrocalamus farinosus growth by remolding the soil microbiome and metabolome[J]. Frontiers in Microbiology, 2023, 14: 1117355. doi: 10.3389/fmicb.2023.1117355. [34] Zhou X G, Zhang J Y, Rahman M K U, et al. Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes[J]. Molecular Plant, 2023, 16(5): 849-864. |