[1] Zhou B, Carrillo-larco R M, Danaei G, et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants[J]. The Lancet, 2021, 398(10304): 957-980. [2] Li X C, Zhang J, Zhuo J L.The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases[J]. Pharmacological Research, 2017, 125: 21-38. [3] Wu J, Liao W, Udenigwe C C.Revisiting the mechanisms of ACE inhibitory peptides from food proteins[J]. Trends in Food Science & Technology, 2017, 69: 214-219. [4] Yang G Z, Meng Q, Shi J, et al.Special tea products featuring functional components: health benefits and processing strategies[J]. Comprehensive Reviews in Food Science and Food Safety, 2023, 22(3): 1686-1721. [5] Shi J, Simal-gandara J, Mei J, et al. Insight into the pigmented anthocyanins and the major potential co-pigmented flavonoids in purple-coloured leaf teas[J]. Food Chemistry, 2021, 363: 130278. doi: 10.1016/j.foodchem.2021.130278. [6] Dong J, Xu X, Liang Y, et al.Inhibition of angiotensin converting enzyme (ACE) activity by polyphenols from tea (Camellia sinensis) and links to processing method[J]. Food & Function, 2011, 2(6): 310. doi: 10.1039/c1fo10023h. [7] Kurita I, Maeda-yamamoto M, Tachibana H, et al. Antihypertensive effect of Benifuuki tea containing O-methylated EGCG[J]. Journal of Agricultural and Food Chemistry, 2010, 58(3): 1903-1908. [8] Fan W D, Zong H R, Zhao T, et al.Bioactivities and mechanisms of dietary proanthocyanidins on blood pressure lowering: a critical review of in vivo and clinical studies[J]. Critical Reviews in Food Science and Nutrition, 2022: 1-17. doi: 10.1080/10408398.2022.2132375. [9] Ockermann P, Headley L, Lizio R, et al.A review of the properties of anthocyanins and their influence on factors affecting cardiometabolic and cognitive health[J]. Nutrients, 2021, 13(8): 2831. doi: 10.3390/nu13082831. [10] 包云秀, 夏丽飞, 李友勇, 等. 茶树新品种‘紫娟’[J]. 园艺学报, 2008, 35(6): 934. Bao Y X, Xia L F, Li Y Y, et al.A new tea tree cultivar ‘Zjuan’[J]. Acta Horticulturae Sinica, 2008, 35(6): 934. [11] Hinton T, Johnston G A R. GABA-enriched teas as neuro-nutraceuticals[J]. Neurochemistry International, 2020, 141: 104895. doi: 10.1016/j.neuint.2020.104895. [12] Dai W D, Xie D C, Lin Z, et al.A nontargeted and targeted metabolomics study on the dynamic changes in metabolite levels during the anaerobic treatment of γ-aminobutyric acid (GABA) tea[J]. LWT, 2020, 126: 109313. doi: 10.1016/j.lwt.2020.109313. [13] Chen Q, Zhang Y M, Tao M M, et al.Comparative metabolic responses and adaptive strategies of tea leaves (Camellia sinensis) to N2 and CO2 anaerobic treatment by a nontargeted metabolomics approach[J]. Journal of Agricultural and Food Chemistry, 2018, 66(36): 9565-9572. [14] Yin Z T, Yan R Y, Jiang Y S, et al.Identification of peptides in Qingke baijiu and evaluation of its angiotensin converting enzyme (ACE) inhibitory activity and stability[J]. Food Chemistry, 2022, 395: 133551. doi: 10.1016/j.foodchem.2022.133551. [15] Wei D, Fan W L, Xu Y.Identification of water-soluble peptides in distilled spent grain and its angiotensin converting enzyme (ACE) inhibitory activity based on UPLC-Q-TOF-MS and proteomics analysis[J]. Food Chemistry, 2021, 353: 129521. doi: 10.1016/j.foodchem.2021.129521. [16] Yang C, Hu Z Y, Lu M L, et al.Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea[J]. Food Research International, 2018, 106: 909-919. [17] Da Silva T B V, Castilho P A, De Sá-nakanishi A B, et al. The inhibitory action of purple tea on in vivo starch digestion compared to other Camellia sinensis teas[J]. Food Research International, 2021, 150: 110781. doi: 10.1016/j.foodres.2021.110781. [18] 杨高中, 彭群华, 张悦, 等. 厌氧处理对不同类型茶叶的氨基酸组成及生物活性的影响[J]. 茶叶科学, 2022, 42(2): 222-232. Yang G Z, Peng Q H, Zhang Y, et al.Effects of anaerobic treatment on amino acid composition and biological activities of different type teas[J]. Journal of Tea Science, 2022, 42(2): 222-232. [19] Wang Y, Kan Z, Thompson H J, et al.Impact of six typical processing methods on the chemical composition of tea leaves using a single Camellia sinensis cultivar, Longjing 43[J]. Journal of Agricultural and Food Chemistry, 2019, 67(19): 5423-5436. [20] Yu F, Chen C, Chen S N, et al.Dynamic changes and mechanisms of organic acids during black tea manufacturing process[J]. Food Control, 2022, 132: 108535. doi: 10.1016/j.foodcont.2021.108535. [21] 吕海鹏, 杨停, 梁名志, 等. “紫娟”茶中的EGCG3"Me成分研究[J]. 现代食品科技, 2014, 30(9): 286-289, 296. Lü H P, Yang T, Liang M Z, et al.Study of EGCG3"Me content in Zijuan tea[J]. Modern Food Science and Technology, 2014, 30(9): 286-289, 296. [22] 时鸿迪, 王邦政, 李乾, 等. 不同加工工艺下‘紫娟’茶品质的比较[J]. 中国农学通报, 2020, 36(34): 142-147. Shi H D, Wang B Z, Li Q, et al.The quality of ‘Zijuan’ tea under different processing techniques: a comparative analysis[J]. Chinese Agricultural Science Bulletin, 2020, 36(34): 142-147. [23] Lü H P, Dai W D, Tan J F, et al.Identification of the anthocyanins from the purple leaf coloured tea cultivar Zijuan (Camellia sinensis var. assamica) and characterization of their antioxidant activities[J]. Journal of Functional Foods, 2015, 17: 449-458. [24] Tu J, Liu G H, Jin Y C, et al.Enrichment of γ-aminobutyric acid in mulberry leaves and the inhibitory effects of the water extract on ACE and α-glucosidase activity[J]. Industrial Crops and Products, 2022, 177: 114485. doi: 10.1016/j.indcrop.2021.114485. [25] Wu Y, Han Z S, Wen M C, et al.Screening of α-glucosidase inhibitors in large-leaf yellow tea by offline bioassay coupled with liquid chromatography tandem mass spectrometry[J]. Food Science and Human Wellness, 2022, 11(3): 627-634. [26] Diana M, Quílez J, Rafecas M.Gamma-aminobutyric acid as a bioactive compound in foods: a review[J]. Journal of Functional Foods, 2014, 10: 407-420. [27] Liu Z, Bruins M E, Ni L, et al.Green and black tea phenolics: bioavailability, transformation by colonic microbiota, and modulation of colonic microbiota[J]. Journal of Agricultural and Food Chemistry, 2018, 66(32): 8469-8477. [28] Wang X M, Chen H X, Fu X G, et al.A novel antioxidant and ACE inhibitory peptide from rice bran protein: biochemical characterization and molecular docking study[J]. LWT, 2017, 75: 93-99. doi: 10.1016/j.lwt.2016.08.047. [29] Shih Y H, Chen F A, Wang L F, et al.Discovery and study of novel antihypertensive peptides derived from cassia obtusifoliaseeds[J]. Journal of Agricultural and Food Chemistry, 2019, 67(28): 7810-7820. [30] Mirzaei M, Mirdamadi S, Ehsani M R, et al.Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: purification and molecular docking[J]. Journal of Food and Drug Analysis, 2018, 26(2): 696-705. [31] Shukor N A, Van Camp J, Gonzales G B, et al.Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: a study of structure activity relationships[J]. Journal of Agricultural and Food Chemistry, 2013, 61(48): 11832-11839. doi:10.1021/jf404641v. |