茶叶科学 ›› 2023, Vol. 43 ›› Issue (5): 593-606.doi: 10.13305/j.cnki.jts.2023.05.010
• 综述 • 下一篇
龙飘飘, 苏胜晓, 张梁*
收稿日期:
2023-06-14
修回日期:
2023-08-14
出版日期:
2023-10-15
发布日期:
2023-11-06
通讯作者:
*zhli2091@sina.com
作者简介:
龙飘飘,女,博士研究生,主要从事茶叶风味品质化学方面的研究。
基金资助:
LONG Piaopiao, SU Shengxiao, ZHANG Liang*
Received:
2023-06-14
Revised:
2023-08-14
Online:
2023-10-15
Published:
2023-11-06
摘要: 茶叶色泽是茶叶风味和品质的重要组成部分。呈色物质具有生色团结构和助色基团,其综合呈色效果可以使茶汤呈现不同深浅程度的绿、黄、红色。随着呈色物质在茶汤中的浓度增加,茶汤颜色会相应地发生变化,呈现黄绿色、橙黄色、红褐色等不同色泽。此外,茶叶加工过程中的发酵(酶促氧化)、干燥等加工工艺,以及茶叶冲泡过程中的温度、pH、浓度差异等也会影响茶汤的色泽及亮度。综述茶叶中呈色物质的化学结构、颜色特征、呈色机理及影响因素,以期揭示茶叶色泽的呈色规律,为茶叶风味及品质提升和加工技术创新提供理论依据。
中图分类号:
龙飘飘, 苏胜晓, 张梁. 茶叶颜色成分研究进展[J]. 茶叶科学, 2023, 43(5): 593-606. doi: 10.13305/j.cnki.jts.2023.05.010.
LONG Piaopiao, SU Shengxiao, ZHANG Liang. Research Progress on Colored Substances in Tea[J]. Journal of Tea Science, 2023, 43(5): 593-606. doi: 10.13305/j.cnki.jts.2023.05.010.
[1] Zhai X T, Zhang L, Granvogl M, et al.Flavor of tea ( [2] 李邦玉, 吴媛, 吴虹燕, 等. 紫外可见光谱法研究EGCG的稳定性[J]. 江苏农业科学, 2015, 43(7): 294-297. Li B Y, Wu Y, Wu H Y, et al.Explore the stability of EGCG using UV-visible spectroscopy[J]. Jiangsu Agricultural Sciences, 2015, 43(7): 294-297. [3] 黄梅丽, 王俊卿. 食品色香味化学[M]. 2版. 北京: 中国轻工业出版社, 2008: 3-4. Huang M L, Wang J Q.Colour, taste and odor chemistry of food, Second edition[M]. 2nd ed. Beijing: China Light Industry Press, 2008: 3-4. [4] Wong D W S. Mechanism and theory in food chemistry[M]. 2nd ed. California: Springer, 2018. [5] Shen J Z, Zou Z W, Zhang X Z, et al.Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant ( -0010-1. [6] Dai Q Y, He Y Y, Ho C T, et al.Effect of interaction of epigallocatechin gallate and flavonols on color alteration of simulative green tea infusion after thermal treatment[J]. Journal of Food Science and Technology, 2017, 54(9): 2919-2928. [7] Kouno M I.Structures of two new oxidation products of green tea polyphenols generated by model tea fermentation[J]. Tetrahedron, 2002, 58(43): 8851-8856. [8] Tanaka T, Inoue K, Betsumiya Y, et al.Two types of oxidative dimerization of the black tea polyphenol theaflavin[J]. Journal of Agricultural and Food Chemistry, 2001, 49(12): 5785-5789. [9] Wan X C, Nursten H E, Cai Y, et al.A new type of tea pigment: from the chemical oxidation of epicatechin gallate and isolated from tea[J]. Journal of the Science of Food and Agriculture, 1997, 74(3): 401-408. [10] Kusano R, Tanaka T, Matsuo Y, et al.Structures of epicatechin gallate trimer and tetramer produced by enzymatic oxidation[J]. Chemical and Pharmaceutical Bulletin (Tokyo), 2008, 55(12): 1768-1772. [11] Matsuo Y, Tanaka T, Kouno I.A new mechanism for oxidation of epigallocatechin and production of benzotropolone pigments[J]. Tetrahedron, 2006, 62(20): 4774-4783. [12] Bailey R G, Nursten H E, Mcdowell I.Comparative study of the reversed-phase high-performance liquid chromatography of black tea liquors with special reference to the thearubigins[J]. Journal of Chromatography A, 1991, 542(1): 115-128. [13] Berkowitz J E, Coggon P, Sanderson G W.Formation of epitheaflavic acid and its transformation to thearubigins during tea fermentation[J]. Phytochemistry, 1971, 10(10): 2271-2278. [14] Hashimoto F, Nonaka G I, Nishioka I.Tannins and related compounds. LXIX. : isolation and structure elucidation of B, B'-linked bisflavanoids, theasinensins D-G and oolongtheanin from oolong tea. (2)[J]. Chempharmbull, 1988, 36(5): 1676-1684. [15] Shii T, Tanaka T, Watarumi S, et al.Polyphenol composition of a functional fermented tea obtained by tea-rolling processing of green tea and loquat leaves[J]. Journal of Agricultural and Food Chemistry, 2011, 59(13): 7253-7260. [16] Matsuo Y, Hayashi T, Saito Y, et al.Structures of enzymatic oxidation products of epigallocatechin[J]. Tetrahedron, 2013, 69(42): 8952-8958. [17] Tanaka T, Watarumi S, Matsuo Y, et al.Production of theasinensins A and D, epigallocatechin gallate dimers of black tea, by oxidation-reduction dismutation of dehydrotheasinensin A[J]. Tetrahedron, 2003, 59(40): 7939-7947. [18] Tanaka T, Matsuo Y, Kouno I.A novel black tea pigment and two new oxidation products of epigallocatechin-3- [19] Uchida K, Ogawa K, Yanase E.Structure determination of novel oxidation products from epicatechin: thearubigin-like molecules[J]. Molecules, 2016, 21(3): 273. doi: 10.3390/molecules21030273. [20] Matsuo Y, Li Y, Watarumi S, et al.Production and degradation mechanism of theacitrin C, a black tea pigment derived from epigallocatechin-3- [21] Itoh N, Katsube Y, Yamamoto K, et al.Laccase-catalyzed conversion of green tea catechins in the presence of gallic acid to epitheaflagallin and epitheaflagallin 3- [22] Sang S, Tian S, Meng X, et al.Theadibenzotropolone, a new type pigment from enzymatic oxidation of (-)-epicatechin and (-)-epigallocatechin gallate and characterized from black tea using LC/MS/MS[J]. Tetrahedron Letters, 2002, 43(40): 7129-7133. [23] Long P, Rakariyatham K, Ho C T, et al.Thearubigins: formation, structure, health benefit and sensory property[J]. Trends in Food Science & Technology, 2023, 133: 37-48. [24] Zhang S, Yang C, Idehen E, et al.Novel theaflavin-type chlorogenic acid derivatives identified in black tea[J]. Journal of Agricultural and Food Chemistry, 2018, 66(13): 3402-3407. [25] 周杰. 高温烘焙(拉老火)工艺对黄大茶化学成分及降糖降脂活性的影响[D]. 合肥: 安徽农业大学, 2019: 37. Zhou J.Effects of high-temperature roasting process on chemical constituents, hypoglycemic and lipid-lowering efficacy of large-leaf yellow tea[D]. Hefei: Anhui Agricultural University, 2019: 37. [26] Degenhardt A, Engelhardt U H, Wendt A S, et al.Isolation of black tea pigments using high-speed countercurrent chromatography and studies on properties of black tea polymers[J]. Journal of Agricultural and Food Chemistry, 2000, 48(11): 5200-5205. [27] Wang J Q, Fu Y Q, Granato D, et al.Study on the color effects of (-)-epigallocatechin-3-gallate under different pH and temperatures in a model beverage system[J]. Food Control, 2022, 139: 109112. doi: 10.1016/j.foodcont.2022.109112. [28] Tanaka T, Mine C, Watarumi S, et al.Accumulation of epigallocatechin quinone dimers during tea fermentation and formation of theasinensins[J]. Journal of Natural Products, 2002, 65(11): 1582-1587. [29] Hua J J, Wang H J, Yuan H B, et al.New insights into the effect of fermentation temperature and duration on catechins conversion and formation of tea pigments and theasinensins in black tea[J]. Journal of the Science of Food and Agriculture, 2022, 102(7): 2750-2760. [30] Kuhnert N.Unraveling the structure of the black tea thearubigins[J]. Archives of Biochemistry and Biophysics, 2010, 501(1): 37-51. [31] Zhu J Y, Wang J J, Yuan H B, et al.Effects of fermentation temperature and time on the color attributes and tea pigments of Yunnan Congou black tea[J]. Foods, 2022, 11(13): 1845. doi: 10.3390/foods11131845. [32] Obanda M, Owuor P O, Mang'oka R. Changes in the chemical and sensory quality parameters of black tea due to variations of fermentation time and temperature[J]. Food Chemistry, 2001, 75(4): 395-404. [33] Cheng L Z, Wang Y F, Zhang J R, et al.Integration of non-targeted metabolomics and E-tongue evaluation reveals the chemical variation and taste characteristics of five typical dark teas[J]. LWT, 2021, 150: 111875. doi: 10.1016/j.lwt.2021.111875. [34] Cui Y Q, Lai G P, Wen M C, et al.Identification of low-molecular-weight color contributors of black tea infusion by metabolomics analysis based on UV-visible spectroscopy and mass spectrometry[J]. Food Chemistry, 2022, 386: 132788. doi: 10.1016/j.foodchem.2022.132788. [35] Shi J, Simal-Gandara J, Mei J F, et al.Insight into the pigmented anthocyanins and the major potential co-pigmented flavonoids in purple-coloured leaf teas[J]. Food Chemistry, 2021, 363: 130278. doi: 10.1016/j.foodchem.2021.130278. [36] Jiang H, Yu F, Qin L, et al.Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea ( [37] Wang Y R, Cui H P, Zhang Q, et al.Proline-glucose Amadori compounds: aqueous preparation, characterization and saltiness enhancement[J]. Food Research International, 2021, 144(3): 110319. doi: 10.1016/j.foodres.2021.110319. [38] Yu X L, Hu S, He C, et al.Chlorophyll metabolism in postharvest tea ( [39] Li J, Hua J J, Zhou Q H, et al.Comprehensive lipidome-wide profiling reveals dynamic changes of tea lipids during manufacturing process of black tea[J]. Journal of Agricultural and Food Chemistry, 2017, 65(46): 10131-10140. [40] Roshanak S, Rahimmalek M, Goli S a H. Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea ( [41] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 茶叶生物化学, 2003: 18. Wan X C.Tea biochemistry[M]. 3rd ed. Beijing: China Agriculture Press, 2003: 18. [42] 罗晓莉, 高彦祥. 茶饮料色泽劣变及护色技术研究进展[J]. 中国食品添加剂, 2022, 33(2): 218-229. Luo X L, Gao Y X.Research progress of color substances, color degradation mechanism and color protection technology for tea beverages[J]. China Food Additives, 2022, 33(2): 218-229. [43] Fan Y G, Zhao X X, Wang H Y, et al.Effects of light intensity on metabolism of light-harvesting pigment and photosynthetic system in [44] Lai Y S, Li S, Tang Q, et al.The dark-purple tea cultivar 'Ziyan' accumulates a large amount of delphinidin-related anthocyanins[J]. Journal of Agricultural and Food Chemistry, 2016, 64(13): 2719-2726. [45] Wang H J, Hua J J, Jiang Y W, et al.Influence of fixation methods on the chestnut-like aroma of green tea and dynamics of key aroma substances[J]. Food Research International, 2020, 136: 109479. doi: 10.1016/j.foodres.2020.109479. [46] 纵榜正. 闷黄通气条件对黄茶感官及滋味化学品质的影响研究[D]. 杭州: 浙江大学, 2020: 56-60. Zong B Z.The effect of ventilating conditions on the sensory quality and taste-chemical quality of yellow tea in the yellowing process[D]: Hangzhou: Zhengjiang University, 2020: 56-60. [47] 丁兆堂, 王秀峰, 于海宁, 等. 茶多酚体外氧化产物颜色稳定性及对PC-3细胞生长的影响[J]. 茶叶科学, 2005, 25(3): 213-218. Ding Z T, Wang X F, Yu H N, et al.Color stability of oxidation products of tea polyphenols and their effects on the growth of PC-3 cells[J]. Journal of Tea Science, 2005, 25(3): 213-218. [48] Cao Q Q, Wang F, Wang J Q, et al.Effects of brewing water on the sensory attributes and physicochemical properties of tea infusions[J]. Food Chemistry, 2021, 364: 130235. doi: 10.1016/j.foodchem.2021.130235. [49] Xu Y Q, Zou C, Gao Y, et al.Effect of the type of brewing water on the chemical composition, sensory quality and antioxidant capacity of Chinese teas[J]. Food Chemistry, 2017, 236: 142-151. [50] Deng S H, Cao Q Q, Zhu Y, et al.Effects of natural spring water on the sensory attributes and physicochemical properties of tea infusions[J]. Food Chemistry, 2023, 419: 136079. doi: 10.1016/j.foodchem.2023.136079. [51] Qin C Y, Lian L, Xu W, et al.Comparison of the chemical composition and antioxidant, anti-inflammatory, [52] Zhang L, Cao Q Q, Granato D, et al.Association between chemistry and taste of tea: a review[J]. Trends in Food Science & Technology, 2020, 101(1): 139-149. [53] 黄藩, 刘飞, 王云, 等. 计算机视觉技术在茶叶领域中的应用现状及展望[J]. 茶叶科学, 2019, 39(1): 81-87. Huang F, Liu F, Wang Y, et al.Research progress and prospect on computer vision technology application in tea production[J]. Journal of Tea Science, 2019, 39(1): 81-87. [54] 汪建, 杜世平. 基于颜色和形状的茶叶计算机识别研究[J]. 茶叶科学, 2008, 28(6): 420-424. Wang J, Du S P.Identification investigation of tea based on HSI color space and figure[J]. Journal of Tea Science, 2008, 28(6): 420-424. [55] 江俞蓉, 刘思彤, 高静, 等. 六安瓜片拉老火“起霜”的形成机制及其对茶叶品质的影响[J]. 茶叶科学, 2018, 38(5): 487-495. Jiang Y R, Liu S T, Gao J, et al.The mechanism of frost-like powder and its effects on Lu'an guapian tea quality[J]. Journal of Tea Science, 2018, 38(5): 487-495. [56] Chen J Y, Yang Y Q, Deng Y L, et al.Aroma quality evaluation of Dianhong black tea infusions by the combination of rapid gas phase electronic nose and multivariate statistical analysis[J]. LWT, 2022, 153: 112496. doi: 10.1016/j.lwt.2021.112496. [57] 戴前颖, 叶颖君, 安琪, 等. 黄大茶感官特征定量描述与风味轮构建[J]. 茶叶科学, 2021, 41(4): 535-544. Dai Q Y, Ye Y J, An Q, et al.Sensory characteristics of yellow large leaf tea by quantitative descriptive analysis and construction of flavor wheel[J]. Journal of Tea Science, 2021, 41(4): 535-544. [58] Li Y C, Ran W, He C, et al.Effects of different tea tree varieties on the color, aroma, and taste of Chinese Enshi green tea[J]. Food Chemistry: X, 2022, 14: 100289. doi: 10.1016/j.fochx.2022.100289. [59] Mao Y L, Wang J Q, Chen G S, et al.Effect of chemical composition of black tea infusion on the color of milky tea[J]. Food Research International, 2020, 139: 109945. doi: 10.1016/j.foodres.2020.109945. [60] Liang Y R, Lu J L, Zhang L Y, et al.Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions[J]. Food Chemistry, 2003, 80(2): 283-290. [61] 高玉萍, 谢前途, 涂云飞, 等. 平阳黄茶适制品种比较研究[J]. 中国茶叶加工, 2023(1): 77-84. Gao Y P, Xie Q T, Tu Y F, et al.Comparative study of different tea varieties’ performance on processing Pingyang yellow tea[J]. China Tea Processing, 2023(1): 77-84. [62] 何丽梅. 白茶色泽及香气的指纹图谱分析[D]. 福州: 福建农林大学, 2014: 68-69. He L M.The fingerprint analysis of white tea color and aroma[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014: 68-69. [63] 潘芝涵. 武夷水仙茶不同加工工艺对品质影响的研究[D]. 昆明: 云南农业大学, 2017: 18-20. Pan Z H.Study on the influence of different processing technology on quality of Wuyi Narcissus tea[D]. Kunming: Yunnan Agricultural University, 2017: 18-20. [64] Zou Y, Ma W J, Tang Q, et al.A high-precision method evaluating color quality of Sichuan dark tea based on colorimeter combined with multi-layer perceptron[J]. Journal of Food Process Engineering, 2020, 43(8): 13444. doi: 10.1111/jfpe.13444. [65] 李玉川, 董晨, 陈玉琼, 等. 优质青砖茶渥堆工艺优化[J]. 食品安全质量检测学报, 2022, 13(14): 4431-4438. Li Y C, Dong C, Chen Y Q, et al.Pile-fermentation conditions optimization of high-quality Qingzhuan tea[J]. Journal of Food Safety and Quality, 2022, 13(14): 4431-4438. |
[1] | 王利民, 陈诗平, 黄东风. 喷施不同浓度海藻叶面肥对茶叶产量和品质的影响[J]. 茶叶科学, 2024, 44(1): 53-61. |
[2] | 洪孔林, 吴明晖, 高博, 冯业宁. 基于改进YOLOv7-tiny的茶叶嫩芽分级识别方法[J]. 茶叶科学, 2024, 44(1): 62-74. |
[3] | 张汇源, 马宽, 高婧, 金俞谷, 王玉洁, 苏祝成, 宁井铭, 陈红平, 侯智炜. 不同等级径山茶特征香气成分分析[J]. 茶叶科学, 2024, 44(1): 101-118. |
[4] | 高峰, 许蒋鸿, 陈富桥. 数字资本会影响消费者增加茶叶线上购买吗?——基于4 090个消费者样本的实证分析[J]. 茶叶科学, 2023, 43(6): 870-880. |
[5] | 吴正浩, 郑芹芹, 郝振霞, 王晨, 陈红平, 鲁成银. 酸体系下改良分散固相萃取用于茶叶农残快速检测的前处理技术[J]. 茶叶科学, 2023, 43(3): 389-398. |
[6] | 邱世婷, 侯雪, 雷绍荣, 韩梅, 贺光云, 李莹, 覃蜀迪. 超高效液相色谱-串联质谱法同时测定茶叶中烟酰胺腺嘌呤二核苷酸及其4种前体化合物含量[J]. 茶叶科学, 2023, 43(2): 216-226. |
[7] | 陈宇宏, 高颖, 韩震, 尹军峰. 不同种质茶叶籽皂素含量及组成分析[J]. 茶叶科学, 2022, 42(5): 705-716. |
[8] | 李峥, 刘锭, 霍增辉, 陈富桥. 中国与RCEP成员国茶叶贸易竞争性与互补性分析[J]. 茶叶科学, 2022, 42(5): 740-752. |
[9] | 方梦瑞, 吕军, 阮建云, 边磊, 武传宇, 姚青. 基于改进YOLOv4-tiny的茶叶嫩芽检测模型[J]. 茶叶科学, 2022, 42(4): 549-560. |
[10] | 刘奇, 欧阳建, 刘昌伟, 陈宏宇, 李娟, 熊立瑰, 刘仲华, 黄建安. 茶叶品质评价技术研究进展[J]. 茶叶科学, 2022, 42(3): 316-330. |
[11] | 向晶, 梁月荣, 赵东, 王开荣, 陆建良, 袁名安, 郑新强. 不同品种、地区茶叶籽仁含油量及茶叶籽油中脂肪酸组分和含量差异性分析[J]. 茶叶科学, 2022, 42(2): 233-248. |
[12] | 胡高华, 曹建荣, 杨蕾文宣, 王晨, 周苏娟, 刘新, 鲁成银, 陈红平, 马桂岑. 基于壳聚糖/氧化石墨烯/硅藻土固相萃取-液相色谱串联质谱测定茶叶中多种农药残留[J]. 茶叶科学, 2022, 42(2): 249-262. |
[13] | 疏再发, 郑生宏, 邵静娜, 周慧娟, 吉庆勇, 刘瑜, 何卫中, 王丽鸳. 不同茶树品种(系)对减半施肥的响应研究[J]. 茶叶科学, 2022, 42(2): 277-289. |
[14] | 吴芹瑶, 杨江帆, 林程, 管曦. 中国茶叶生产布局变迁研究[J]. 茶叶科学, 2022, 42(2): 290-300. |
[15] | 何文丽, 潘杉, 管曦. 可追溯茶叶产品的认知、信任与购买意愿研究[J]. 茶叶科学, 2022, 42(1): 140-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|