茶叶科学 ›› 2023, Vol. 43 ›› Issue (5): 593-606.doi: 10.13305/j.cnki.jts.2023.05.010
• 综述 • 下一篇
龙飘飘, 苏胜晓, 张梁*
收稿日期:
2023-06-14
修回日期:
2023-08-14
出版日期:
2023-10-15
发布日期:
2023-11-06
通讯作者:
*zhli2091@sina.com
作者简介:
龙飘飘,女,博士研究生,主要从事茶叶风味品质化学方面的研究。
基金资助:
LONG Piaopiao, SU Shengxiao, ZHANG Liang*
Received:
2023-06-14
Revised:
2023-08-14
Online:
2023-10-15
Published:
2023-11-06
摘要: 茶叶色泽是茶叶风味和品质的重要组成部分。呈色物质具有生色团结构和助色基团,其综合呈色效果可以使茶汤呈现不同深浅程度的绿、黄、红色。随着呈色物质在茶汤中的浓度增加,茶汤颜色会相应地发生变化,呈现黄绿色、橙黄色、红褐色等不同色泽。此外,茶叶加工过程中的发酵(酶促氧化)、干燥等加工工艺,以及茶叶冲泡过程中的温度、pH、浓度差异等也会影响茶汤的色泽及亮度。综述茶叶中呈色物质的化学结构、颜色特征、呈色机理及影响因素,以期揭示茶叶色泽的呈色规律,为茶叶风味及品质提升和加工技术创新提供理论依据。
中图分类号:
龙飘飘, 苏胜晓, 张梁. 茶叶颜色成分研究进展[J]. 茶叶科学, 2023, 43(5): 593-606. doi: 10.13305/j.cnki.jts.2023.05.010.
LONG Piaopiao, SU Shengxiao, ZHANG Liang. Research Progress on Colored Substances in Tea[J]. Journal of Tea Science, 2023, 43(5): 593-606. doi: 10.13305/j.cnki.jts.2023.05.010.
[1] Zhai X T, Zhang L, Granvogl M, et al.Flavor of tea ( [2] 李邦玉, 吴媛, 吴虹燕, 等. 紫外可见光谱法研究EGCG的稳定性[J]. 江苏农业科学, 2015, 43(7): 294-297. Li B Y, Wu Y, Wu H Y, et al.Explore the stability of EGCG using UV-visible spectroscopy[J]. Jiangsu Agricultural Sciences, 2015, 43(7): 294-297. [3] 黄梅丽, 王俊卿. 食品色香味化学[M]. 2版. 北京: 中国轻工业出版社, 2008: 3-4. Huang M L, Wang J Q.Colour, taste and odor chemistry of food, Second edition[M]. 2nd ed. Beijing: China Light Industry Press, 2008: 3-4. [4] Wong D W S. Mechanism and theory in food chemistry[M]. 2nd ed. California: Springer, 2018. [5] Shen J Z, Zou Z W, Zhang X Z, et al.Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant ( -0010-1. [6] Dai Q Y, He Y Y, Ho C T, et al.Effect of interaction of epigallocatechin gallate and flavonols on color alteration of simulative green tea infusion after thermal treatment[J]. Journal of Food Science and Technology, 2017, 54(9): 2919-2928. [7] Kouno M I.Structures of two new oxidation products of green tea polyphenols generated by model tea fermentation[J]. Tetrahedron, 2002, 58(43): 8851-8856. [8] Tanaka T, Inoue K, Betsumiya Y, et al.Two types of oxidative dimerization of the black tea polyphenol theaflavin[J]. Journal of Agricultural and Food Chemistry, 2001, 49(12): 5785-5789. [9] Wan X C, Nursten H E, Cai Y, et al.A new type of tea pigment: from the chemical oxidation of epicatechin gallate and isolated from tea[J]. Journal of the Science of Food and Agriculture, 1997, 74(3): 401-408. [10] Kusano R, Tanaka T, Matsuo Y, et al.Structures of epicatechin gallate trimer and tetramer produced by enzymatic oxidation[J]. Chemical and Pharmaceutical Bulletin (Tokyo), 2008, 55(12): 1768-1772. [11] Matsuo Y, Tanaka T, Kouno I.A new mechanism for oxidation of epigallocatechin and production of benzotropolone pigments[J]. Tetrahedron, 2006, 62(20): 4774-4783. [12] Bailey R G, Nursten H E, Mcdowell I.Comparative study of the reversed-phase high-performance liquid chromatography of black tea liquors with special reference to the thearubigins[J]. Journal of Chromatography A, 1991, 542(1): 115-128. [13] Berkowitz J E, Coggon P, Sanderson G W.Formation of epitheaflavic acid and its transformation to thearubigins during tea fermentation[J]. Phytochemistry, 1971, 10(10): 2271-2278. [14] Hashimoto F, Nonaka G I, Nishioka I.Tannins and related compounds. LXIX. : isolation and structure elucidation of B, B'-linked bisflavanoids, theasinensins D-G and oolongtheanin from oolong tea. (2)[J]. Chempharmbull, 1988, 36(5): 1676-1684. [15] Shii T, Tanaka T, Watarumi S, et al.Polyphenol composition of a functional fermented tea obtained by tea-rolling processing of green tea and loquat leaves[J]. Journal of Agricultural and Food Chemistry, 2011, 59(13): 7253-7260. [16] Matsuo Y, Hayashi T, Saito Y, et al.Structures of enzymatic oxidation products of epigallocatechin[J]. Tetrahedron, 2013, 69(42): 8952-8958. [17] Tanaka T, Watarumi S, Matsuo Y, et al.Production of theasinensins A and D, epigallocatechin gallate dimers of black tea, by oxidation-reduction dismutation of dehydrotheasinensin A[J]. Tetrahedron, 2003, 59(40): 7939-7947. [18] Tanaka T, Matsuo Y, Kouno I.A novel black tea pigment and two new oxidation products of epigallocatechin-3- [19] Uchida K, Ogawa K, Yanase E.Structure determination of novel oxidation products from epicatechin: thearubigin-like molecules[J]. Molecules, 2016, 21(3): 273. doi: 10.3390/molecules21030273. [20] Matsuo Y, Li Y, Watarumi S, et al.Production and degradation mechanism of theacitrin C, a black tea pigment derived from epigallocatechin-3- [21] Itoh N, Katsube Y, Yamamoto K, et al.Laccase-catalyzed conversion of green tea catechins in the presence of gallic acid to epitheaflagallin and epitheaflagallin 3- [22] Sang S, Tian S, Meng X, et al.Theadibenzotropolone, a new type pigment from enzymatic oxidation of (-)-epicatechin and (-)-epigallocatechin gallate and characterized from black tea using LC/MS/MS[J]. Tetrahedron Letters, 2002, 43(40): 7129-7133. [23] Long P, Rakariyatham K, Ho C T, et al.Thearubigins: formation, structure, health benefit and sensory property[J]. Trends in Food Science & Technology, 2023, 133: 37-48. [24] Zhang S, Yang C, Idehen E, et al.Novel theaflavin-type chlorogenic acid derivatives identified in black tea[J]. Journal of Agricultural and Food Chemistry, 2018, 66(13): 3402-3407. [25] 周杰. 高温烘焙(拉老火)工艺对黄大茶化学成分及降糖降脂活性的影响[D]. 合肥: 安徽农业大学, 2019: 37. Zhou J.Effects of high-temperature roasting process on chemical constituents, hypoglycemic and lipid-lowering efficacy of large-leaf yellow tea[D]. Hefei: Anhui Agricultural University, 2019: 37. [26] Degenhardt A, Engelhardt U H, Wendt A S, et al.Isolation of black tea pigments using high-speed countercurrent chromatography and studies on properties of black tea polymers[J]. Journal of Agricultural and Food Chemistry, 2000, 48(11): 5200-5205. [27] Wang J Q, Fu Y Q, Granato D, et al.Study on the color effects of (-)-epigallocatechin-3-gallate under different pH and temperatures in a model beverage system[J]. Food Control, 2022, 139: 109112. doi: 10.1016/j.foodcont.2022.109112. [28] Tanaka T, Mine C, Watarumi S, et al.Accumulation of epigallocatechin quinone dimers during tea fermentation and formation of theasinensins[J]. Journal of Natural Products, 2002, 65(11): 1582-1587. [29] Hua J J, Wang H J, Yuan H B, et al.New insights into the effect of fermentation temperature and duration on catechins conversion and formation of tea pigments and theasinensins in black tea[J]. Journal of the Science of Food and Agriculture, 2022, 102(7): 2750-2760. [30] Kuhnert N.Unraveling the structure of the black tea thearubigins[J]. Archives of Biochemistry and Biophysics, 2010, 501(1): 37-51. [31] Zhu J Y, Wang J J, Yuan H B, et al.Effects of fermentation temperature and time on the color attributes and tea pigments of Yunnan Congou black tea[J]. Foods, 2022, 11(13): 1845. doi: 10.3390/foods11131845. [32] Obanda M, Owuor P O, Mang'oka R. Changes in the chemical and sensory quality parameters of black tea due to variations of fermentation time and temperature[J]. Food Chemistry, 2001, 75(4): 395-404. [33] Cheng L Z, Wang Y F, Zhang J R, et al.Integration of non-targeted metabolomics and E-tongue evaluation reveals the chemical variation and taste characteristics of five typical dark teas[J]. LWT, 2021, 150: 111875. doi: 10.1016/j.lwt.2021.111875. [34] Cui Y Q, Lai G P, Wen M C, et al.Identification of low-molecular-weight color contributors of black tea infusion by metabolomics analysis based on UV-visible spectroscopy and mass spectrometry[J]. Food Chemistry, 2022, 386: 132788. doi: 10.1016/j.foodchem.2022.132788. [35] Shi J, Simal-Gandara J, Mei J F, et al.Insight into the pigmented anthocyanins and the major potential co-pigmented flavonoids in purple-coloured leaf teas[J]. Food Chemistry, 2021, 363: 130278. doi: 10.1016/j.foodchem.2021.130278. [36] Jiang H, Yu F, Qin L, et al.Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea ( [37] Wang Y R, Cui H P, Zhang Q, et al.Proline-glucose Amadori compounds: aqueous preparation, characterization and saltiness enhancement[J]. Food Research International, 2021, 144(3): 110319. doi: 10.1016/j.foodres.2021.110319. [38] Yu X L, Hu S, He C, et al.Chlorophyll metabolism in postharvest tea ( [39] Li J, Hua J J, Zhou Q H, et al.Comprehensive lipidome-wide profiling reveals dynamic changes of tea lipids during manufacturing process of black tea[J]. Journal of Agricultural and Food Chemistry, 2017, 65(46): 10131-10140. [40] Roshanak S, Rahimmalek M, Goli S a H. Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea ( [41] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 茶叶生物化学, 2003: 18. Wan X C.Tea biochemistry[M]. 3rd ed. Beijing: China Agriculture Press, 2003: 18. [42] 罗晓莉, 高彦祥. 茶饮料色泽劣变及护色技术研究进展[J]. 中国食品添加剂, 2022, 33(2): 218-229. Luo X L, Gao Y X.Research progress of color substances, color degradation mechanism and color protection technology for tea beverages[J]. China Food Additives, 2022, 33(2): 218-229. [43] Fan Y G, Zhao X X, Wang H Y, et al.Effects of light intensity on metabolism of light-harvesting pigment and photosynthetic system in [44] Lai Y S, Li S, Tang Q, et al.The dark-purple tea cultivar 'Ziyan' accumulates a large amount of delphinidin-related anthocyanins[J]. Journal of Agricultural and Food Chemistry, 2016, 64(13): 2719-2726. [45] Wang H J, Hua J J, Jiang Y W, et al.Influence of fixation methods on the chestnut-like aroma of green tea and dynamics of key aroma substances[J]. Food Research International, 2020, 136: 109479. doi: 10.1016/j.foodres.2020.109479. [46] 纵榜正. 闷黄通气条件对黄茶感官及滋味化学品质的影响研究[D]. 杭州: 浙江大学, 2020: 56-60. Zong B Z.The effect of ventilating conditions on the sensory quality and taste-chemical quality of yellow tea in the yellowing process[D]: Hangzhou: Zhengjiang University, 2020: 56-60. [47] 丁兆堂, 王秀峰, 于海宁, 等. 茶多酚体外氧化产物颜色稳定性及对PC-3细胞生长的影响[J]. 茶叶科学, 2005, 25(3): 213-218. Ding Z T, Wang X F, Yu H N, et al.Color stability of oxidation products of tea polyphenols and their effects on the growth of PC-3 cells[J]. Journal of Tea Science, 2005, 25(3): 213-218. [48] Cao Q Q, Wang F, Wang J Q, et al.Effects of brewing water on the sensory attributes and physicochemical properties of tea infusions[J]. Food Chemistry, 2021, 364: 130235. doi: 10.1016/j.foodchem.2021.130235. [49] Xu Y Q, Zou C, Gao Y, et al.Effect of the type of brewing water on the chemical composition, sensory quality and antioxidant capacity of Chinese teas[J]. Food Chemistry, 2017, 236: 142-151. [50] Deng S H, Cao Q Q, Zhu Y, et al.Effects of natural spring water on the sensory attributes and physicochemical properties of tea infusions[J]. Food Chemistry, 2023, 419: 136079. doi: 10.1016/j.foodchem.2023.136079. [51] Qin C Y, Lian L, Xu W, et al.Comparison of the chemical composition and antioxidant, anti-inflammatory, [52] Zhang L, Cao Q Q, Granato D, et al.Association between chemistry and taste of tea: a review[J]. Trends in Food Science & Technology, 2020, 101(1): 139-149. [53] 黄藩, 刘飞, 王云, 等. 计算机视觉技术在茶叶领域中的应用现状及展望[J]. 茶叶科学, 2019, 39(1): 81-87. Huang F, Liu F, Wang Y, et al.Research progress and prospect on computer vision technology application in tea production[J]. Journal of Tea Science, 2019, 39(1): 81-87. [54] 汪建, 杜世平. 基于颜色和形状的茶叶计算机识别研究[J]. 茶叶科学, 2008, 28(6): 420-424. Wang J, Du S P.Identification investigation of tea based on HSI color space and figure[J]. Journal of Tea Science, 2008, 28(6): 420-424. [55] 江俞蓉, 刘思彤, 高静, 等. 六安瓜片拉老火“起霜”的形成机制及其对茶叶品质的影响[J]. 茶叶科学, 2018, 38(5): 487-495. Jiang Y R, Liu S T, Gao J, et al.The mechanism of frost-like powder and its effects on Lu'an guapian tea quality[J]. Journal of Tea Science, 2018, 38(5): 487-495. [56] Chen J Y, Yang Y Q, Deng Y L, et al.Aroma quality evaluation of Dianhong black tea infusions by the combination of rapid gas phase electronic nose and multivariate statistical analysis[J]. LWT, 2022, 153: 112496. doi: 10.1016/j.lwt.2021.112496. [57] 戴前颖, 叶颖君, 安琪, 等. 黄大茶感官特征定量描述与风味轮构建[J]. 茶叶科学, 2021, 41(4): 535-544. Dai Q Y, Ye Y J, An Q, et al.Sensory characteristics of yellow large leaf tea by quantitative descriptive analysis and construction of flavor wheel[J]. Journal of Tea Science, 2021, 41(4): 535-544. [58] Li Y C, Ran W, He C, et al.Effects of different tea tree varieties on the color, aroma, and taste of Chinese Enshi green tea[J]. Food Chemistry: X, 2022, 14: 100289. doi: 10.1016/j.fochx.2022.100289. [59] Mao Y L, Wang J Q, Chen G S, et al.Effect of chemical composition of black tea infusion on the color of milky tea[J]. Food Research International, 2020, 139: 109945. doi: 10.1016/j.foodres.2020.109945. [60] Liang Y R, Lu J L, Zhang L Y, et al.Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions[J]. Food Chemistry, 2003, 80(2): 283-290. [61] 高玉萍, 谢前途, 涂云飞, 等. 平阳黄茶适制品种比较研究[J]. 中国茶叶加工, 2023(1): 77-84. Gao Y P, Xie Q T, Tu Y F, et al.Comparative study of different tea varieties’ performance on processing Pingyang yellow tea[J]. China Tea Processing, 2023(1): 77-84. [62] 何丽梅. 白茶色泽及香气的指纹图谱分析[D]. 福州: 福建农林大学, 2014: 68-69. He L M.The fingerprint analysis of white tea color and aroma[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014: 68-69. [63] 潘芝涵. 武夷水仙茶不同加工工艺对品质影响的研究[D]. 昆明: 云南农业大学, 2017: 18-20. Pan Z H.Study on the influence of different processing technology on quality of Wuyi Narcissus tea[D]. Kunming: Yunnan Agricultural University, 2017: 18-20. [64] Zou Y, Ma W J, Tang Q, et al.A high-precision method evaluating color quality of Sichuan dark tea based on colorimeter combined with multi-layer perceptron[J]. Journal of Food Process Engineering, 2020, 43(8): 13444. doi: 10.1111/jfpe.13444. [65] 李玉川, 董晨, 陈玉琼, 等. 优质青砖茶渥堆工艺优化[J]. 食品安全质量检测学报, 2022, 13(14): 4431-4438. Li Y C, Dong C, Chen Y Q, et al.Pile-fermentation conditions optimization of high-quality Qingzhuan tea[J]. Journal of Food Safety and Quality, 2022, 13(14): 4431-4438. |
[1] | 晏朵, 余鹏辉, 龚雨顺. 萎凋过程中环境胁迫对茶叶品质影响研究进展[J]. 茶叶科学, 2025, 45(1): 1-14. |
[2] | 马雪晴, 吴华伟, 曹春霞, 郑娇莉. 茶园根际解磷菌的筛选及其对茶叶产量、品质及土壤性质的影响[J]. 茶叶科学, 2025, 45(1): 110-120. |
[3] | 赵建诚, 倪惠菁, 王波, 蔡春菊, 杨振亚. 毛竹立竹密度对林下茶树生理生长和茶叶品质的影响[J]. 茶叶科学, 2024, 44(6): 928-940. |
[4] | 许文琪. 微波消解-电感耦合等离子体质谱(ICP-MS)法准确测定茶叶中总硒含量[J]. 茶叶科学, 2024, 44(6): 1014-1022. |
[5] | 徐晴晴, 聂晴, 刘助生, 郭青, 刘仲华, 蔡淑娴. 康普茶细菌纤维素的形成途径及其在废弃茶叶资源高效利用中的应用[J]. 茶叶科学, 2024, 44(5): 707-717. |
[6] | 侯智炜, 吕永铭, 马宽, 张汇源, 顾哲, 张然, 李乐, 金俞谷, 苏祝成, 陈红平. 不同茶树品种的径山茶挥发性成分差异研究[J]. 茶叶科学, 2024, 44(5): 747-762. |
[7] | 姚蕾珺, 陈燕秋, 林浩, 汪璐瑶, 石培育, 张阳阳, 黄婷, 宋娟, 王义, 戴琴, 刘川. 一体化QuEChERS净化-超高效液相色谱-串联质谱法测定茶叶中27种吡咯里西啶类生物碱[J]. 茶叶科学, 2024, 44(5): 831-842. |
[8] | 李文燕, 张琳, 陈利燕, 张颖彬, 周苏娟, 洪一苇, 梁思辰, 孙洪峰, 陈红平. 我国茶叶产品质量标准中理化指标差异性分析[J]. 茶叶科学, 2024, 44(5): 843-852. |
[9] | 张怡, 胡林英, 伊晓云, 陈富桥, 姜爱芹. 新式茶饮消费对传统茶消费意愿的反哺效应分析[J]. 茶叶科学, 2024, 44(5): 853-868. |
[10] | 谢晨昕, 赵锋, 林雨, 蔡良绥, 林智, 郭丽. 日晒茶风味化学特征研究进展[J]. 茶叶科学, 2024, 44(4): 554-564. |
[11] | 甘芳瑗, 刘振平, 傅丙生, 龙道崎, 庞钶靖, 姜容. 气相色谱-离子迁移谱技术在茶叶领域应用的研究进展[J]. 茶叶科学, 2024, 44(4): 565-574. |
[12] | 杜茜雅, 刘馨秋, 卢勇. 长江流域茶叶产地历史变迁及其影响因素[J]. 茶叶科学, 2024, 44(4): 694-706. |
[13] | 胡月, 宁亚婷, 黎洪霞, 罗逢健, 尹荣秀, 张新忠. 茶叶中手性农药残留分析与风险评估研究进展[J]. 茶叶科学, 2024, 44(3): 363-385. |
[14] | 霍增辉, 柳畅, 张玫, 陈富桥, 刘仲华. 农药最大残留限量标准差异对我国茶叶出口RCEP成员国的贸易效率影响研究——基于随机前沿引力模型[J]. 茶叶科学, 2024, 44(3): 526-542. |
[15] | 许婧, 黄友谊, 黄进, 李春雷. 茶叶不同提取物及不同茶叶对结核分枝杆菌抑制作用的研究[J]. 茶叶科学, 2024, 44(2): 341-349. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|