[1] |
Hartley L, Flowers N, Holmes J, et al. Green and black tea for the primary prevention of cardiovascular disease [J]. Cochrane Database of Systematic Reviews, 2013, 2013(6): Cd009934. doi: 10.1002/14651858.CD009934.pub2.
|
[2] |
Boyle N B, Billington J, Lawton C, et al.A combination of green tea, rhodiola, magnesium and B vitamins modulates brain activity and protects against the effects of induced social stress in healthy volunteers[J]. Nutritional Neuroscience, 2022, 25(9): 1845-1859.
|
[3] |
Keller A, Wallace T C.Tea intake and cardiovascular disease: an umbrella review[J]. Annals of Medicine, 2021, 53(1): 929-944.
|
[4] |
Wang X C, Hao X Y, Ma C L, et al.Identification of differential gene expression profiles between winter dormant and sprouting axillary buds in tea plant (Camellia sinensis) by suppression subtractive hybridization[J]. Tree Genetics & Genomes, 2014, 10(5): 1149-1159.
|
[5] |
Hao X Y, Yang Y J, Yue C, et al.Comprehensive transcriptome analyses reveal differential gene expression profiles of Camellia sinensis axillary buds at para-, endo-, ecodormancy, and bud flush stages[J]. Frontiers in Plant Science, 2017, 8: 553. doi: 10.3389/fpls.2017.00553.
|
[6] |
Tan L Q, Wang L B, Zhou B, et al.Comparative transcriptional analysis reveled genes related to short winter-dormancy regulation in Camellia sinensis[J]. Plant Growth Regulation, 2020, 92: 401-415.
|
[7] |
Liu Y J, Chen S, Chen J D, et al.Comprehensive analysis and expression profiles of the AP2/ERF gene family during spring bud break in tea plant (Camellia sinensis)[J]. BMC Plant Biology, 2023, 23(1): 206. doi: 10.1186/s12870-023-04221-y.
|
[8] |
刘贤德, 张国范. 运用拟测交策略构建遗传图谱的理论依据及研究进展[J]. 海洋科学, 2008, 32(10): 81-85.Liu X D, Zhang G F.The theory base of constructing genetic map using “pseudo-testcross” mapping strategy and its development[J]. Marine Sciences, 2008, 32(10): 81-85.
|
[9] |
Tan L Q, Wang L Y, Xu L Y, et al.SSR-based genetic mapping and QTL analysis for timing of spring bud flush, young shoot color, and mature leaf size in tea plant (Camellia sinensis)[J]. Tree Genetics & Genomes, 2016, 12(3): 52. doi: 10.1007/s11295-016-1008-9.
|
[10] |
Tan L Q, Cui D, Wang L B, et al. Genetic analysis of the early bud flush trait of tea plants (Camellia sinensis) in the cultivar ‘Emei Wenchun’ and its open-pollinated offspring [J]. Horticulture Research, 2022, 21(9): uhac086. doi: 10.1093/hr/uhac086.
|
[11] |
Xu L Y, Wang L Y, Wei K, et al.High-density SNP linkage map construction and QTL mapping for flavonoid-related traits in a tea plant (Camellia sinensis) using 2b-RAD sequencing[J]. BMC Genomics, 2018, 19(1): 955. doi: 10.1186/s12864-018-5291-8.
|
[12] |
Wei K, Wang X C, Hao X Y, et al.Development of a genome-wide 200K SNP array and its application for high-density genetic mapping and origin analysis of Camellia sinensis[J]. Plant Biotechnology Journal, 2022, 20(3): 414-416.
|
[13] |
Ooijen J W.MapQTL®6. Software for the mapping of quantitative trait loci in experimental populations[M]. Wagenigen: Kyazma BV, 2009.
|
[14] |
Zhang L Y, Meng L, Wu W C, et al.GACD: integrated software for genetic analysis in clonal F1 and double cross populations[J]. Journal of Heredity, 2015, 106(6): 741-744.
|
[15] |
Voorrips R E.MapChart: software for the graphical presentation of linkage maps and QTLs[J]. Journal Heredity, 2002, 93(1): 77-78.
|
[16] |
Chen J D, He W Z, Chen S, et al.TeaGVD: a comprehensive database of genomic variations for uncovering the genetic architecture of metabolic traits in tea plants[J]. Frontiers in Plant Science, 2022, 13: 1056891. doi: 10.3389/fpls.2022.1056891.
|
[17] |
Xia E H, Tong W, Hou Y, et al.The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation[J]. Molecular Plant, 2020, 13(7): 1013-1026.
|
[18] |
王新超, 王璐, 郝心愿, 等. 茶树遗传育种研究“十三五”进展及“十四五”发展方向[J]. 中国茶叶, 2021, 43(9): 50-57.Wang X C, Wang L, Hao X Y, et al.Tea genetics and breeding progress during the 13th five-year plan period and development direction in the 14th five-year plan period[J]. China Tea, 2021, 43(9): 50-57.
|
[19] |
Wang R J, Gao X F, Yang J, et al.Genome-wide association study to identify favorable SNP allelic variations and candidate genes that control the timing of spring bud flush of tea (Camellia sinensis) using SLAF-seq[J]. Journal of Agricultural and Food Chemistry, 2019, 67(37): 10380-10391.
|
[20] |
You Q, Sood S, Luo Z L, et al.Identifying genomic regions controlling ratoon stunting disease resistance in sugarcane (Saccharum spp.) clonal F1 population[J]. The Crop Journal, 2021, 9(5): 1070-1078.
|
[21] |
陈艳梅. 红掌高密度SNP遗传连锁图谱构建及疫病抗性佛焰苞花色性状QTL定位[D]. 海口: 海南大学, 2020.Chen Y M.High SNP density genetic map construction and QTLs mapping for identification for blight resistant and spathe colour in anthurium [D]. Haikou: Hainan University, 2020.
|
[22] |
Wang X C, Feng H, Chang Y X, et al.Population sequencing enhances understanding of tea plant evolution[J]. Nature Communications, 2020, 11(1): 4447. doi: 10.1038/s41467-020-18228-8.
|
[23] |
Zhang X T, Chen S, Shi L Q, et al.Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis[J]. Nature Genetics, 2021, 53(8): 1250-1259.
|
[24] |
Je J Y, Chen H, Song C, et al.Arabidopsis DREB2C modulates ABA biosynthesis during germination[J]. Biochemical and Biophysical Research Communications, 2014, 452(1): 91-98.
|
[25] |
Rushton D L, Tripathi P, Rabara R C, et al.WRKY transcription factors: key components in abscisic acid signalling[J]. Plant Biotechnology Journal, 2012, 10(1): 2-11.
|
[26] |
Nakashima K, Fujita Y, Kanamori N, et al.Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy[J]. Plant Cell Physiology, 2009, 50(7): 1345-1363.
|
[27] |
Wang Y F, Hou Y X, Qiu J H, et al.Abscisic acid promotes jasmonic acid biosynthesis via a 'SAPK10-bZIP72-AOC' pathway to synergistically inhibit seed germination in rice (Oryza sativa)[J]. New Phytologist, 2020, 228(4): 1336-1353.
|
[28] |
Chen D H, He L L, Lin M Y, et al.A ras-related small GTP-binding protein, RabE1c, regulates stomatal movements and drought stress responses by mediating the interaction with ABA receptors[J]. Plant Science, 2021, 306: 110858. doi: 10.1016/j.plantsci.2021.110858.
|
[29] |
吴丹, 唐冬英, 李新梅, 等. F-box蛋白在植物生长发育中的功能研究进展[J]. 生命科学研究, 2015, 19(4): 362-367.Wu D, Tang D Y, Li X M, et al.Progresses on F-box protein function in plant growth and development[J]. Life Science Research, 2015, 19(4): 362-367.
|
[30] |
Chen F, Dahal P, Bradfora K J.Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination[J]. Plant Physiology, 2001, 127(3): 928-936.
|
[31] |
Marowa P, Ding A M, Kong Y Z.Expansins: roles in plant growth and potential applications in crop improvement[J]. Plant Cell Reports, 2016, 35(5): 949-965.
|
[32] |
Yan A, Wu M J, Yan L M, et al.AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis[J]. Plos One, 2014, 9(1): e85208. doi: 10.1371/journal.pone.0085208.
|
[33] |
Doerge R W.Mapping and analysis of quantitative trait loci in experimental populations[J]. Nature Reviews Genetics, 2002, 3(1): 43-52.
|
[34] |
Ferreira A, Silva M C D, Silva L D C E, et al. Estimating the effects of population size and type on the accuracy of genetic maps[J]. Genetics and Molecular Biology, 2006, 29(1): 187-192.
|
[35] |
Zhong H, Wang Y, Qu F R, et al. A novel TcS allele conferring the high-theacrine and low-caffeine traits and having potential use in tea plant breeding [J]. Horticulture Research, 2022, 9: uhac191. doi: 10.1093/hr/uhac191.
|