茶叶科学 ›› 2023, Vol. 43 ›› Issue (6): 747-756.doi: 10.13305/j.cnki.jts.2023.06.012
王留彬, 吴立赟, 韦康, 王丽鸳*
收稿日期:
2023-08-30
修回日期:
2023-10-06
出版日期:
2023-12-15
发布日期:
2024-01-08
通讯作者:
*wangly@tricaas.com
作者简介:
王留彬,男,博士研究生,主要从事茶树种质资源与育种研究,wangliubin@tricaas.com。
基金资助:
WANG Liubin, WU Liyun, WEI Kang, WANG Liyuan*
Received:
2023-08-30
Revised:
2023-10-06
Online:
2023-12-15
Published:
2024-01-08
摘要: 春季发芽期(Timing of spring bud flush,TBF)是茶树重要的农艺性状,对茶叶的风味品质和经济效益均具有重要的影响。为了挖掘调控茶树TBF性状的关键候选基因,以龙井43×白毫早杂交的F1群体327株子代为材料,利用基于该群体构建的茶树高密度遗传图谱,采用MapQTL 6.0和GACD 1.2软件对茶树春季发芽指数(Sprouting indexs,SPI)进行数量性状基因座(QTL)定位。连续两年(2022、2023年)对群体子代的春季SPI进行观测,结果显示,SPI在F1群体内存在明显的性状分离,表现出数量性状的特征。利用MapQTL 6.0软件定位到1个主效的QTL(qSPI-5-1),分别可解释18.30%(2022年)和7.60%(2023年)的表型变异;利用GACD 1.2软件定位到2个稳定的QTL位点(qSPI-1,qSPI-5-2),解释2.75%~18.40%的表型变异,且qSPI-5-2与qSPI-5-1位点基本重合。进一步将上述3个位点的置信区间与茶树参考基因组进行比对,通过基因功能注释分析共筛选到23个与调控茶树春季发芽期相关的候选基因。研究结果为进一步探究茶树春季萌发的调控基因和分子机理提供了理论参考。
中图分类号:
王留彬, 吴立赟, 韦康, 王丽鸳. 茶树春季发芽期的QTL定位及候选基因分析[J]. 茶叶科学, 2023, 43(6): 747-756. doi: 10.13305/j.cnki.jts.2023.06.012.
WANG Liubin, WU Liyun, WEI Kang, WANG Liyuan. QTL Mapping and Candidate Gene Analysis for Timing of Spring Bud Flush in Tea Plants (Camellia sinensis)[J]. Journal of Tea Science, 2023, 43(6): 747-756. doi: 10.13305/j.cnki.jts.2023.06.012.
[1] | Hartley L, Flowers N, Holmes J, et al. Green and black tea for the primary prevention of cardiovascular disease [J]. Cochrane Database of Systematic Reviews, 2013, 2013(6): Cd009934. doi: 10.1002/14651858.CD009934.pub2. |
[2] | Boyle N B, Billington J, Lawton C, et al.A combination of green tea, rhodiola, magnesium and B vitamins modulates brain activity and protects against the effects of induced social stress in healthy volunteers[J]. Nutritional Neuroscience, 2022, 25(9): 1845-1859. |
[3] | Keller A, Wallace T C.Tea intake and cardiovascular disease: an umbrella review[J]. Annals of Medicine, 2021, 53(1): 929-944. |
[4] | Wang X C, Hao X Y, Ma C L, et al.Identification of differential gene expression profiles between winter dormant and sprouting axillary buds in tea plant (Camellia sinensis) by suppression subtractive hybridization[J]. Tree Genetics & Genomes, 2014, 10(5): 1149-1159. |
[5] | Hao X Y, Yang Y J, Yue C, et al.Comprehensive transcriptome analyses reveal differential gene expression profiles of Camellia sinensis axillary buds at para-, endo-, ecodormancy, and bud flush stages[J]. Frontiers in Plant Science, 2017, 8: 553. doi: 10.3389/fpls.2017.00553. |
[6] | Tan L Q, Wang L B, Zhou B, et al.Comparative transcriptional analysis reveled genes related to short winter-dormancy regulation in Camellia sinensis[J]. Plant Growth Regulation, 2020, 92: 401-415. |
[7] | Liu Y J, Chen S, Chen J D, et al.Comprehensive analysis and expression profiles of the AP2/ERF gene family during spring bud break in tea plant (Camellia sinensis)[J]. BMC Plant Biology, 2023, 23(1): 206. doi: 10.1186/s12870-023-04221-y. |
[8] | 刘贤德, 张国范. 运用拟测交策略构建遗传图谱的理论依据及研究进展[J]. 海洋科学, 2008, 32(10): 81-85.Liu X D, Zhang G F.The theory base of constructing genetic map using “pseudo-testcross” mapping strategy and its development[J]. Marine Sciences, 2008, 32(10): 81-85. |
[9] | Tan L Q, Wang L Y, Xu L Y, et al.SSR-based genetic mapping and QTL analysis for timing of spring bud flush, young shoot color, and mature leaf size in tea plant (Camellia sinensis)[J]. Tree Genetics & Genomes, 2016, 12(3): 52. doi: 10.1007/s11295-016-1008-9. |
[10] | Tan L Q, Cui D, Wang L B, et al. Genetic analysis of the early bud flush trait of tea plants (Camellia sinensis) in the cultivar ‘Emei Wenchun’ and its open-pollinated offspring [J]. Horticulture Research, 2022, 21(9): uhac086. doi: 10.1093/hr/uhac086. |
[11] | Xu L Y, Wang L Y, Wei K, et al.High-density SNP linkage map construction and QTL mapping for flavonoid-related traits in a tea plant (Camellia sinensis) using 2b-RAD sequencing[J]. BMC Genomics, 2018, 19(1): 955. doi: 10.1186/s12864-018-5291-8. |
[12] | Wei K, Wang X C, Hao X Y, et al.Development of a genome-wide 200K SNP array and its application for high-density genetic mapping and origin analysis of Camellia sinensis[J]. Plant Biotechnology Journal, 2022, 20(3): 414-416. |
[13] | Ooijen J W.MapQTL®6. Software for the mapping of quantitative trait loci in experimental populations[M]. Wagenigen: Kyazma BV, 2009. |
[14] | Zhang L Y, Meng L, Wu W C, et al.GACD: integrated software for genetic analysis in clonal F1 and double cross populations[J]. Journal of Heredity, 2015, 106(6): 741-744. |
[15] | Voorrips R E.MapChart: software for the graphical presentation of linkage maps and QTLs[J]. Journal Heredity, 2002, 93(1): 77-78. |
[16] | Chen J D, He W Z, Chen S, et al.TeaGVD: a comprehensive database of genomic variations for uncovering the genetic architecture of metabolic traits in tea plants[J]. Frontiers in Plant Science, 2022, 13: 1056891. doi: 10.3389/fpls.2022.1056891. |
[17] | Xia E H, Tong W, Hou Y, et al.The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation[J]. Molecular Plant, 2020, 13(7): 1013-1026. |
[18] | 王新超, 王璐, 郝心愿, 等. 茶树遗传育种研究“十三五”进展及“十四五”发展方向[J]. 中国茶叶, 2021, 43(9): 50-57.Wang X C, Wang L, Hao X Y, et al.Tea genetics and breeding progress during the 13th five-year plan period and development direction in the 14th five-year plan period[J]. China Tea, 2021, 43(9): 50-57. |
[19] | Wang R J, Gao X F, Yang J, et al.Genome-wide association study to identify favorable SNP allelic variations and candidate genes that control the timing of spring bud flush of tea (Camellia sinensis) using SLAF-seq[J]. Journal of Agricultural and Food Chemistry, 2019, 67(37): 10380-10391. |
[20] | You Q, Sood S, Luo Z L, et al.Identifying genomic regions controlling ratoon stunting disease resistance in sugarcane (Saccharum spp.) clonal F1 population[J]. The Crop Journal, 2021, 9(5): 1070-1078. |
[21] | 陈艳梅. 红掌高密度SNP遗传连锁图谱构建及疫病抗性佛焰苞花色性状QTL定位[D]. 海口: 海南大学, 2020.Chen Y M.High SNP density genetic map construction and QTLs mapping for identification for blight resistant and spathe colour in anthurium [D]. Haikou: Hainan University, 2020. |
[22] | Wang X C, Feng H, Chang Y X, et al.Population sequencing enhances understanding of tea plant evolution[J]. Nature Communications, 2020, 11(1): 4447. doi: 10.1038/s41467-020-18228-8. |
[23] | Zhang X T, Chen S, Shi L Q, et al.Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis[J]. Nature Genetics, 2021, 53(8): 1250-1259. |
[24] | Je J Y, Chen H, Song C, et al.Arabidopsis DREB2C modulates ABA biosynthesis during germination[J]. Biochemical and Biophysical Research Communications, 2014, 452(1): 91-98. |
[25] | Rushton D L, Tripathi P, Rabara R C, et al.WRKY transcription factors: key components in abscisic acid signalling[J]. Plant Biotechnology Journal, 2012, 10(1): 2-11. |
[26] | Nakashima K, Fujita Y, Kanamori N, et al.Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy[J]. Plant Cell Physiology, 2009, 50(7): 1345-1363. |
[27] | Wang Y F, Hou Y X, Qiu J H, et al.Abscisic acid promotes jasmonic acid biosynthesis via a 'SAPK10-bZIP72-AOC' pathway to synergistically inhibit seed germination in rice (Oryza sativa)[J]. New Phytologist, 2020, 228(4): 1336-1353. |
[28] | Chen D H, He L L, Lin M Y, et al.A ras-related small GTP-binding protein, RabE1c, regulates stomatal movements and drought stress responses by mediating the interaction with ABA receptors[J]. Plant Science, 2021, 306: 110858. doi: 10.1016/j.plantsci.2021.110858. |
[29] | 吴丹, 唐冬英, 李新梅, 等. F-box蛋白在植物生长发育中的功能研究进展[J]. 生命科学研究, 2015, 19(4): 362-367.Wu D, Tang D Y, Li X M, et al.Progresses on F-box protein function in plant growth and development[J]. Life Science Research, 2015, 19(4): 362-367. |
[30] | Chen F, Dahal P, Bradfora K J.Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination[J]. Plant Physiology, 2001, 127(3): 928-936. |
[31] | Marowa P, Ding A M, Kong Y Z.Expansins: roles in plant growth and potential applications in crop improvement[J]. Plant Cell Reports, 2016, 35(5): 949-965. |
[32] | Yan A, Wu M J, Yan L M, et al.AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis[J]. Plos One, 2014, 9(1): e85208. doi: 10.1371/journal.pone.0085208. |
[33] | Doerge R W.Mapping and analysis of quantitative trait loci in experimental populations[J]. Nature Reviews Genetics, 2002, 3(1): 43-52. |
[34] | Ferreira A, Silva M C D, Silva L D C E, et al. Estimating the effects of population size and type on the accuracy of genetic maps[J]. Genetics and Molecular Biology, 2006, 29(1): 187-192. |
[35] | Zhong H, Wang Y, Qu F R, et al. A novel TcS allele conferring the high-theacrine and low-caffeine traits and having potential use in tea plant breeding [J]. Horticulture Research, 2022, 9: uhac191. doi: 10.1093/hr/uhac191. |
[1] | 李庆会, 李睿, 温晓菊, 倪德江, 王明乐, 陈玉琼. 氟胁迫条件下茶树叶部实时荧光定量PCR分析中内参基因的筛选与验证[J]. 茶叶科学, 2024, 44(1): 27-36. |
[2] | 刘东娜, 龚雪蛟, 李兰英, 黄藩, 尧渝, 胥亚琼, 高远, 罗凡. 黄化茶树叶片光合及荧光特性分析[J]. 茶叶科学, 2023, 43(6): 757-768. |
[3] | 杨军, 张力岚, 张雯婧, 陈林海, 郑国华, 李毅晶, 王让剑. 福建茶树种质资源群体结构及遗传差异[J]. 茶叶科学, 2023, 43(6): 769-783. |
[4] | 吴淑华, 毛凯权, 陈家铭, 黎健龙, 薛璟花, 曾兰亭, 羊玉花, 辜大川. 茶小绿叶蝉侵害对茶鲜叶持嫩性及其制成乌龙茶品质相关代谢物浸出速率的影响研究[J]. 茶叶科学, 2023, 43(6): 806-822. |
[5] | 李艳春, 王义祥, 叶菁, 李兆伟. 酚酸介导下连作茶树根际病原菌Alternaria sp.及其拮抗菌Pseudomonas sp.变化[J]. 茶叶科学, 2023, 43(6): 823-834. |
[6] | 唐敏, 钟奇天, 徐进, 肖富良, 李解, 翟秀明, 侯渝嘉, 谷雨. 基于图像分析的茶树叶齿形态特征量化研究[J]. 茶叶科学, 2023, 43(6): 835-843. |
[7] | 毛纯, 何季, 文雪峰, 吴传美, 易承熹, 廉建宏, 郭文敏. 代谢组学在茶树生理生化代谢研究中的应用进展[J]. 茶叶科学, 2023, 43(5): 607-620. |
[8] | 杨霁虹, 周汉琛, 徐玉婕. 不同茶树品种中CsNUDX1基因催化功能、启动子结构及功能分析[J]. 茶叶科学, 2023, 43(5): 621-630. |
[9] | 刘洪霞, 刘颖颖, 陈红平, 柴云峰. 草甘膦胁迫对茶树叶片中莽草酸含量的影响[J]. 茶叶科学, 2023, 43(5): 657-666. |
[10] | 吕丹瑜, 金子晶, 陆璐, 何卫中, 疏再发, 邵静娜, 叶俭慧, 梁月荣. 基于图像处理技术的茶树新梢识别和叶面积计算的探索研究[J]. 茶叶科学, 2023, 43(5): 691-702. |
[11] | 唐璐, 李长乐, 葛悦, 王璞, 赵华, 王明乐, 王郁, 郭飞, 倪德江. 茶树地方群体种资源叶片表型及生化组分多样性分析[J]. 茶叶科学, 2023, 43(4): 473-488. |
[12] | 唐子贻, 杜玥, 杨宏斌, 黎星辉, 余有本, 王伟东. 高温和干旱胁迫下茶树叶片内源激素含量变化及其相关基因的表达分析[J]. 茶叶科学, 2023, 43(4): 489-500. |
[13] | 孙悦, 刘梦月, 高晨曦, 吴全金, 曹士先, 余顺甜, 陈志丹, 金珊, 孙威江. 不同抗虫性茶树品种的叶色及挥发物差异性研究[J]. 茶叶科学, 2023, 43(4): 525-543. |
[14] | 李佳思, 刘迎庆, 张永恒, 张迎澳, 肖烨子, 刘露, 余有本. 茶树CsNCED2启动子互作转录因子筛选及在非生物胁迫中的响应[J]. 茶叶科学, 2023, 43(3): 325-334. |
[15] | 李聪聪, 王浩乾, 叶玙璠, 陈瑶, 任恒泽, 李宇腾, 郝心愿, 王新超, 曹红利, 岳川. 植物激素对茶树春季新梢生长发育的调控作用研究[J]. 茶叶科学, 2023, 43(3): 335-348. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|