茶叶科学 ›› 2023, Vol. 43 ›› Issue (6): 757-768.doi: 10.13305/j.cnki.jts.2023.06.002
刘东娜1,2, 龚雪蛟1,2, 李兰英1,2, 黄藩1,2, 尧渝1,2, 胥亚琼1,2, 高远1, 罗凡1,2,*
收稿日期:
2023-09-14
修回日期:
2023-11-10
出版日期:
2023-12-15
发布日期:
2024-01-08
通讯作者:
*361114727@qq.com
作者简介:
刘东娜,女,助理研究员,主要从事茶树育种与栽培研究,247186413@qq.com。
基金资助:
LIU Dongna1,2, GONG Xuejiao1,2, LI Lanying1,2, HUANG Fan1,2, YAO Yu1,2, XU Yaqiong1,2, GAO Yuan1, LUO Fan1,2,*
Received:
2023-09-14
Revised:
2023-11-10
Online:
2023-12-15
Published:
2024-01-08
摘要: 以3个叶色黄化茶树品种为研究材料,以绿色系茶树品种福鼎大白茶为对照,研究黄化茶树的光合色素含量、光合及叶绿素荧光诱导动力学特性的变化,为叶色黄化茶树品种的种质评价及栽培管理提供科学指导。结果表明:(1)黄化茶树叶片叶绿素总量比对照茶树品种低71.7%~86.8%,类胡萝卜素总量维持在0.16~0.31 mg·g-1。(2)3个黄化茶树品种的净光合速率、气孔导度、水分利用效率、最大净光合速率和光饱和点等光合参数显著降低,光补偿点显著高于对照茶树品种。(3)黄化茶树叶片对光能的吸收、转化与利用等光合过程与对照茶树品种差异显著,其中金凤2号和中黄1号叶片快速叶绿素荧光动力学曲线中的L点和J点相对可变荧光显著升高;叶绿素荧光动力学参数MO、DIO/RC、φDO和φRO等显著增加,FV/FO、ETO/RC、φPO、φEO、ΨEO和PIabs等显著降低。研究认为,黄化茶树叶片光合效率、潜力及生态适应能力均显著降低;其中,茶树黄化叶片光合色素显著减少、PSⅡ光能捕获及光合电子传递效率显著下降,热耗散能量显著增加,是导致其光合作用综合性能降低的重要原因。
中图分类号:
刘东娜, 龚雪蛟, 李兰英, 黄藩, 尧渝, 胥亚琼, 高远, 罗凡. 黄化茶树叶片光合及荧光特性分析[J]. 茶叶科学, 2023, 43(6): 757-768. doi: 10.13305/j.cnki.jts.2023.06.002.
LIU Dongna, GONG Xuejiao, LI Lanying, HUANG Fan, YAO Yu, XU Yaqiong, GAO Yuan, LUO Fan. Analysis of Photosynthetic and Fluorescence Characteristics of Albino Tea Plants[J]. Journal of Tea Science, 2023, 43(6): 757-768. doi: 10.13305/j.cnki.jts.2023.06.002.
[1] | Xiang P, Zhu Q F, Tukhvatshin M, et al.Light control of catechin accumulation is mediated by photosynthetic capacity in tea plant (Camellia sinensis)[J]. BMC Plant Biology, 2021, 21: 478. doi: 10.1186/s12870-021-03260-7. |
[2] | 田月月, 张丽霞, 张正群, 等. 夏秋季遮光对山东黄金芽茶树生理生化特性的影响[J]. 应用生态学报, 2017, 28(3): 789-796.Tian Y Y, Zhang L X, Zhang Q Z, et al.Effects of shading in summer and autumn on physiological and biochemical characteristics of 'Huangjinya' in Shandong Province, China[J]. Chinese Journal of Applied Ecology, 2017, 28(3): 789-796. |
[3] | 王峰, 陈玉真, 王秀萍, 等. 不同品种茶树叶片功能性状及光合特性的比较[J]. 茶叶科学, 2016, 36(3): 285-292.Wang F, Chen Y Z, Wang X P, et al.Comparison of leaf functional and photosynthetic characteristics in different tea cultivars[J]. Journal of Tea Science, 2016, 36(3): 285-292. |
[4] | 张娅, 施树倩, 李亚萍, 等. 不同盐胁迫下小麦叶片渗透性调节和叶绿素荧光特性[J]. 应用生态学报, 2021, 32(12): 4381-4390.Zhang Y, Shi S Q, Li Y P, et al.Osmotic regulation and chlorophyll fluorescence characteristics in leaves of wheat seedlings under different salt stresses[J]. Chinese Journal of Applied Ecology, 2021, 32(12): 4381-4390. |
[5] | Ghotbi-Ravandi A A, Shahbazi M, Pessarakli M, et al. Monitoring the photosystem Ⅱ behavior of wild and cultivated barley in response to progressive water stress and rehydration using OJIP chlorophyll a fluorescence transient[J]. Journal of Plant Nutrition, 2016, 39(8): 1174-1185. |
[6] | 王亚楠, 董丽娜, 丁彦芬, 等. 遮阴对4种紫堇属植物光合特性和叶绿素荧光参数的影响[J]. 应用生态学报, 2020, 31(3): 769-777.Wang Y N, Dong L N, Ding Y F, et al.Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters of four Corydalis species[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 769-777. |
[7] | 林郑和, 钟秋生, 郝志龙, 等. 低氮对不同茶树品种叶绿素荧光特性的影响[J]. 茶叶科学, 2017, 37(4): 363-372.Lin Z H, Zhong Q S, Hao Z L, et al.Effects of chlorophyll fluorescence parameters of different tea cultivars in response to low nitrogen[J]. Journal of Tea Science, 2017, 37(4): 363-372. |
[8] | 尧渝, 张厅, 马伟伟, 等. 不同间作模式对茶树光合生理及茶叶品质的影响[J]. 山西农业科学, 2016, 44(4): 470-473.Yao Y, Zhang T, Ma W W, et al.Effects of different intercropping patterns on photosynthetic physiology characteristics of tea plants and tea quality[J]. Journal of Shanxi Agricultural Sciences, 2016, 44(4): 470-473. |
[9] | Xia W, Li C L, Nie J, et al.Stable isotope and photosynthetic response of tea grown under different temperature and light conditions[J]. Food Chemistry, 2021, 338: 130771. doi: 10.1016/j.foodchem.2021.130771. |
[10] | 邹瑶, 陈盛相, 许燕, 等. 茶树光合特性季节性变化研究[J]. 四川农业大学学报, 2018, 36(2): 210-216.Zou Y, Chen S X, Xu Y, et al.Seasonal changes of photosynthetic characteristics in tea cultivars[J]. Journal of Sichuan Agricultural University, 2018, 36(2): 210-216. |
[11] | 李治鑫, 李鑫, 范利超, 等. 高温胁迫对茶树叶片光合系统的影响[J]. 茶叶科学, 2015, 35(5): 415-422.Li Z X, Li X, Fan L C, et al.Effect of heat stress on the photosynthesis system of tea leaves[J]. Journal of Tea Science, 2015, 35(5): 415-422. |
[12] | Oh S, Koh S C.Photosystem II photochemical efficiency and photosynthetic capacity in leaves of tea plant (Camellia sinensis L.) under winter stress in the field[J]. Horticulture Environment & Biotechnology, 2014, 55(5): 363-371. |
[13] | 王铭涵, 丁玎, 张晨禹, 等. 干旱胁迫对茶树幼苗生长及叶绿素荧光特性的影响[J]. 茶叶科学, 2020, 40(4): 478-491.Wang M H, Ding D, Zhang C Y, et al.Effects of drought stress on growth and chlorophyll fluorescence characteristics of tea seedlings[J]. Journal of Tea Science, 2020, 40(4): 478-491. |
[14] | 谢文钢, 陈玮, 谭礼强, 等. 四川3个特色茶树品种芽叶性状及光合特性分析[J]. 茶叶科学, 2021, 41(6): 813-822.Xie W G, Chen W, Tan L Q, et al.Analysis of bud and leaf characters and photosynthetic characteristics of three tea cultivars in Sichuan[J]. Journal of Tea Science, 2021, 41(6): 813-822. |
[15] | 张晨禹, 王铭涵, 高羲之, 等. 茶树‘湘妃翠’黄化枝光合生理与组织学[J]. 分子植物育种, 2019, 17(23): 7892-7900.Zhang C Y, Wang M H, Gao X Z, et al.Photosynthetic physiological and histology in novel etiolated branch of the 'Xiangfeicui' tea plant (Camellia sinensis)[J]. Molecular Plant Breeding, 2019, 17(23): 7892-7900. |
[16] | Song L B, Ma Q P, Zou Z W, et al.Molecular link between leaf coloration and gene expression of flavonoid and carotenoid biosynthesis in Camellia sinensis cultivar ‘Huangjinya’[J]. Frontiers in Plant Science, 2017, 24: 803. doi: 10.3389/fpls.2017. 00803. |
[17] | 杨小苗, 吴新亮, 刘玉凤, 等. 一个番茄EMS叶色黄化突变体的叶绿素含量及光合作用[J]. 应用生态学报, 2018, 29(6): 1983-1989.Yang X M, Wu X L, Liu Y F, et al.Analysis of chlorophyll and photosynthesis of a tomato chlorophyll-deficient mutant induced by EMS[J]. Chinese Journal of Applied Ecology, 2018, 29(6): 1983-1989. |
[18] | Wang P J, Zheng Y C, Guo Y C, et al.Widely targeted metabolomic and transcriptomic analyses of a novel albino tea mutant of "Rougui"[J]. Forests, 2020, 11(2): 229. doi: 10.3390/f11020229. |
[19] | 赵艺璇, 孙桂芳, 杨建伟, 等. 不同品种矾根叶色表现与色素含量关系研究[J]. 林业与生态科学, 2019, 34(1): 93-96.Zhao Y X, Sun G F, Yang J W, et al.Study of the relationship between leaf color performance and pigment content of Heuchera micrantha[J]. Forestry and Ecological Sciences, 2019, 34(1): 93-96. |
[20] | 高佳, 崔海岩, 史建国, 等. 花粒期光照对夏玉米光合特性和叶绿体超微结构的影响[J]. 应用生态学报, 2018, 29(3): 883-890.Gao J, Cui H Y, Shi J G, et al.Effects of light intensities after anthesis on the photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize (Zea mays L. )[J]. Chinese Journal of Applied Ecology, 2018, 29(3): 883-890. |
[21] | Wang L, Yue C, Cao H L, et al.Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar[J]. BMC Plant Biology, 2014, 14(1): 352. doi: 10.1186/s12870-014-0352-x. |
[22] | 苍晶, 赵会杰. 植物生理学实验教程[M]. 北京: 高等教育出版社, 2013: 57-59.Cang J, Zhao H J.Expermental course of plant physiology [M]. Beijing: Higher Education Press, 2013: 57-59. |
[23] | Arnon D I.Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris[J]. Plant Physiology, 1949, 24(1): 1-15. |
[24] | Ye Z P.A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa[J]. Photosynthetica, 2007, 45(4): 637-640. |
[25] | Strasser R J, Tsimilli-Michael M, Qiang S, et al.Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis[J]. Biochimica et Biophysica Acta, 2010, 1797(6/7): 1313-1326. |
[26] | 杨程, 李向东, 杜思梦, 等. 高温对冬小麦旗叶光合机构的伤害机制[J]. 中国生态农业学报(中英文), 2022, 30(3): 399-408.Yang C, Li X D, Du S M, et al.Photosystem damage mechanism in flag leaves of winter wheat under high temperature[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 399-408. |
[27] | 徐冉, 侯和胜, 佟少明. 藻类叶绿素a/叶绿素b型捕光蛋白复合体结构与功能的研究进展[J]. 天津农业科学, 2016, 22(2): 31-34.Xu R, Hou H S, Tong S M.Research progress of the Chl a/Chl b type light-harvesting complex protein in algae[J]. Tianjin Agricultural Sciences, 2016, 22(2): 31-34. |
[28] | Jiang X F, Zhao H, Guo F.et al.Transcriptomic analysis reveals mechanism of light-sensitive albinism in tea plant Camellia sinensis ‘Huangjinju’[J]. BMC Plant Biology, 2020, 20: 216. doi: 10.1186/s12870-020-02425-0. |
[29] | Polívka T, Frank H A.Molecular factors controlling photosynthetic light harvesting by carotenoids[J]. Accounts of Chemical Research, 2010, 43(8): 1125-1134. |
[30] | Liu B H, Liang J, Tang G M, et al.Drought stress affects on growth, water use efficiency, gas exchange and chlorophyll fluorescence of Juglans rootstocks[J]. Scientia Horticulturae, 2019, 250: 230-235. |
[31] | 周晓瑾, 黄海霞, 张君霞, 等. 盐胁迫对裸果木幼苗光合特性的影响[J]. 草业学报, 2023, 32(2): 75-83.Zhou X J, Huang H X, Zhang J X, et al.Effects of salt stress on photosynthetic characteristics of Gymnocarpos przewalskii seedlings[J]. Acta Prataculturae Sinica, 2023, 32(2): 75-83. |
[32] | 郑雪燕. 遮阴处理对粗肋草生长、光合特性和养分质量分数的影响[J]. 东北林业大学学报, 2022, 50(12): 31-36.Zheng X Y.Effects of shading on the growth, photosynthetic characteristics and nutrient accumulation of Aglaonema commutatumd[J]. Journal of Northeast Forestry University, 2022, 50(12): 31-36. |
[33] | 薛惠云, 王素芳, 张新, 等. 基于快速叶绿素荧光参数的不同基因型棉花叶片衰老研究[J]. 中国生态农业学报(中英文), 2021, 29(5): 870-879.Xue H Y, Wang S F, Zhang X, et al.The rapid chlorophyll a fluorescence characteristics of different cotton genotypes reflect differences in leaf senescence[J]. Chinese Journal of Eco-Agriculture, 2021, 29(5): 870-879. |
[34] | Yue C N, Wang Z H, Yang P X.Review: the effect of light on the key pigment compounds of photosensitive etiolated tea plant[J]. Botanical Studies, 2021, 62(1): 1-15. |
[35] | Li N N, Yang Y P, Ye J H.et al.Effects of sunlight on gene expression and chemical composition of light-sensitive albino tea plant[J]. Plant Growth Regulation, 2016, 78(2): 253-262. |
[36] | Wang L, Cao H L, Chen C S, et al.Complementary transcriptomic and proteomic analyses of a chlorophyll-deficient tea plant cultivar reveal multiple metabolic pathway changes[J]. Journal of Proteomics, 2016, 130: 160. doi: 10.1016/j.jprot.2015.08.019. |
[37] | Liu G F, Han Z X, Feng L, et al.Metabolic flux redirection and transcriptomic reprogramming in the albino tea cultivar 'Yu-Jin-Xiang' with an emphasis on catechin production[J]. Scientific Reports, 2017, 7: 45062. doi: 10.1038/srep45062. |
[38] | 林馨颖, 王鹏杰, 杨如兴, 等. 高茶氨酸茶树新品系‘福黄1号’黄化变异机理[J]. 中国农业科学, 2022, 55(9): 1831-1845.Lin X Y, Wang P J, Yang R X, et al.The albino mechanism of a new high theanine tea cultivar Fuhuang 1[J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845. |
[39] | Jahns P, Holzwarth A R.The role of the xanthophyll cycle and of lutein inphotoprotection of photosystem Ⅱ[J]. Biochimica et Biophysica Acta, 2012, 1817(1): 182-193. |
[40] | Xie X J, Lu X P, Wang L P, et al.High light intensity increases the concentrations of β-carotene and zeaxanthin in marine red macroalgae[J]. Algal Research, 2020, 47: 101852. doi: 10.1016/j.algal.2020.101852. |
[41] | Fan Y G, Zhao X X, Wang H Y, et al.Effects of light intensity on metabolism of light-harvesting pigment and photosynthetic system in Camellia sinensis L. cultivar 'Huangjinya'[J]. Environmental and Experimental Botany, 2019, 166: 103796. doi: 10.1016/j.envexpbot.2019.06.009. |
[42] | Strasser B J.Donor side capacity of photosystem Ⅱ probed by chlorophyll a fluorescence transients[J]. Photosynthesis Research, 1997, 52(2): 147-155. |
[43] | 金立桥, 车兴凯, 张子山, 等. 高温、强光下黄瓜叶片PSⅡ供体侧和受体侧的伤害程度与快速荧光参数Wk变化的关系[J]. 植物生理学报, 2015, 51(6): 969-976.Jin L Q, Che X K, Zhang Z S, et al.The Relationship between the Changes in Wk and different damage degree of PSⅡ donor side and acceptor side under high temperature with high light in cucumber[J]. Plant Physiology Journal, 2015, 51(6): 969-976. |
[44] | 李兰英, 尧渝, 龚雪蛟, 等. 茶树叶色黄化型新品种金凤1号选育研究[J]. 安徽农业科学, 2022, 50(19): 20-24.Li L Y, Yao Y, Gong X J, et al.Breeding report of chlorosis-specific new tea plant variety Jinfeng 1[J]. Journal of Anhui Agricultural Sciences, 2022, 50(19): 20-24. |
[45] | Drop B, Webber-Birungi M, Yadav S N K, et al. Light-harvesting complex Ⅱ (LHCⅡ) and its supramolecular organization in Chlamydomonas reinhardtii[J]. Biochimica et Biophysica Acta, 2014, 1837(1): 63-72. |
[46] | Nelson N, Yocum C F.Structure and function of photosystems I and Ⅱ[J]. Annual Review of Plant Biology, 2006, 57: 521-565. |
[47] | Pokorska B, Zienkiewicz M, Powikrowska M, et al.Differential turnover of the photosystem Ⅱ reaction centre D1 protein in mesophyll and bundle sheath chloroplasts of maize[J]. Biochimica et Biophysica Acta, 2009, 1787(10): 1161-1169. |
[48] | Cai W H, Zheng X Q, Liang Y R.High-light-induced degradation of photosystem Ⅱ subunits’ involvement in the albino phenotype in tea plants[J]. International Journal of Molecular Sciences, 2022, 23(15): 8522. doi: 10.3390/ijms23158522. |
[1] | 杨妮, 李逸民, 李静文, 滕瑞敏, 陈益, 王雅慧, 庄静. 外源5-ALA对干旱胁迫下茶树叶绿素合成和荧光特性及关键酶基因表达的影响[J]. 茶叶科学, 2022, 42(2): 187-199. |
[2] | 谢文钢, 陈玮, 谭礼强, 颜麟沣, 唐茜. 四川3个特色茶树品种芽叶性状及光合特性分析[J]. 茶叶科学, 2021, 41(6): 813-822. |
[3] | 金可, 黄建安, 熊立瑰, 刘硕谦, 覃小洪, 彭靖, 李银花, 李娟. 黄化变异茶树石门黄叶理化分析及茶氨酸相关基因表达研究[J]. 茶叶科学, 2021, 41(1): 40-47. |
[4] | 万绮雯, 杨妮, 李逸民, 韩妙华, 林士佳, 滕瑞敏, 庄静. 外源24-表油菜素内酯对茶树光合特性的影响[J]. 茶叶科学, 2021, 41(1): 58-70. |
[5] | 燕飞, 蒋文华, 曲东, 付静, 赵璇. 外源5-氨基乙酰丙酸对低温胁迫下茶树叶片光合及生理特性的影响[J]. 茶叶科学, 2020, 40(5): 597-606. |
[6] | 王铭涵, 丁玎, 张晨禹, 高羲之, 陈建姣, 唐瀚, 沈程文. 干旱胁迫对茶树幼苗生长及叶绿素荧光特性的影响[J]. 茶叶科学, 2020, 40(4): 478-491. |
[7] | 钟秋生, 林郑和, 郝志龙, 陈常颂, 陈志辉, 游小妹, 单睿阳. 氟铝互作对茶树叶片叶绿素荧光特性的影响[J]. 茶叶科学, 2019, 39(5): 537-546. |
[8] | 程冬梅, 张丽, 韦红飞, 江新凤, 周赛霞, 张志勇, 彭焱松. 庐山不同海拔茶树光合响应差异研究[J]. 茶叶科学, 2019, 39(4): 447-454. |
[9] | 罗红玉, 唐敏, 翟秀明, 杨娟, 刘翔, 谷雨, 袁林颖, 钟应富, 黄尚俊. 不同光质对红茶萎凋叶叶绿素荧光参数及生化品质的影响[J]. 茶叶科学, 2019, 39(2): 131-138. |
[10] | 王松琳, 马春雷, 黄丹娟, 马建强, 金基强, 姚明哲, 陈亮. 基于SSR标记的白化和黄化茶树品种遗传多样性分析及指纹图谱构建[J]. 茶叶科学, 2018, 38(1): 58-68. |
[11] | 林郑和, 钟秋生, 郝志龙, 游小妹, 陈志辉, 陈常颂, 单睿阳, 阮其春. 低氮对不同茶树品种叶绿素荧光特性的影响[J]. 茶叶科学, 2017, 37(4): 363-372. |
[12] | 李治鑫, 李鑫, 范利超, 韩文炎. 外源油菜素内酯对茶树光合特性的影响[J]. 茶叶科学, 2015, 35(6): 543-550. |
[13] | 林郑和, 钟秋生, 陈常颂, 游小妹, 陈志辉. 缺氮条件下不同品种茶树叶片光合特性的变化[J]. 茶叶科学, 2013, 33(6): 500-504. |
[14] | 庞磊, 周小生, 李叶云, 江昌俊. 应用叶绿素荧光法鉴定茶树品种抗寒性的研究[J]. 茶叶科学, 2011, 31(6): 521-524. |
[15] | 苏金为, 王湘平. 镉离子对茶叶光合机构及性能的影响[J]. 茶叶科学, 2004, 24(1): 65-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|