茶叶科学 ›› 2024, Vol. 44 ›› Issue (1): 1-15.doi: 10.13305/j.cnki.jts.2024.01.004
• 综述 • 下一篇
徐伟1,2, 俞蓉欣2, 张相春2,*, 张以稳2, 陈红平2, 田宝明2, 郑芹芹2, 吴媛媛3, 夏琛4, 韦兵1,*
收稿日期:
2023-12-11
修回日期:
2024-02-04
出版日期:
2024-02-25
发布日期:
2024-03-13
通讯作者:
*zhangxc@tricaas.com;weibing90@fynu.edu.cn
作者简介:
徐伟,男,硕士研究生,主要从事茶多酚新材料构建及生物医用。
基金资助:
XU Wei1,2, YU Rongxin2, ZHANG Xiangchun2,*, ZHANG Yiwen2, CHEN Hongping2, TIAN Baoming2, ZHENG Qinqin2, WU Yuanyuan3, XIA Chen4, WEI Bing1,*
Received:
2023-12-11
Revised:
2024-02-04
Online:
2024-02-25
Published:
2024-03-13
摘要: 细菌感染可引起多种疾病,是全球主要死亡原因之一。抗生素一直是治疗细菌感染类疾病的主要策略,但抗生素的过量和不合理使用已导致多种细菌产生耐药性,严重威胁人类生命健康。植物多酚具有天然的抗菌特性,但酚羟基结构的不稳定性限制了其生物利用。为解决这个难题,研究者将多酚与其他物质自组装构建新型纳米生物材料,不仅提高了多酚稳定性和生物利用率,还使其协同发挥抗菌活性,在抗菌领域中具有巨大的应用潜力和优势。综述了近年来不同类型的多酚自组装生物纳米材料构建策略及抗菌性能,包括多酚-金属、多酚-水凝胶、多酚-壳聚糖、多酚-蛋白质和多酚-脂质体等材料,指出了新型多酚自组装生物材料在抗菌领域应用中面临的问题,并对其应用前景进行了展望。
中图分类号:
徐伟, 俞蓉欣, 张相春, 张以稳, 陈红平, 田宝明, 郑芹芹, 吴媛媛, 夏琛, 韦兵. 多酚自组装抗菌生物材料的构建及其应用进展[J]. 茶叶科学, 2024, 44(1): 1-15. doi: 10.13305/j.cnki.jts.2024.01.004.
XU Wei, YU Rongxin, ZHANG Xiangchun, ZHANG Yiwen, CHEN Hongping, TIAN Baoming, ZHENG Qinqin, WU Yuanyuan, XIA Chen, WEI Bing. Construction of Polyphenol Self-assembly Antibacterial Biomaterials and Progress in Their Applications[J]. Journal of Tea Science, 2024, 44(1): 1-15. doi: 10.13305/j.cnki.jts.2024.01.004.
[1] Luo G, Gao S J.Global health concerns stirred by emerging viral infections[J]. Journal of Medical Virology, 2020, 92(4): 399-400. [2] Fisher R A, Gollan B, Helaine S.Persistent bacterial infections and persister cells[J]. Nature Reviews Microbiology, 2017, 15(8): 453-464. [3] Zhang X C, Zhang Z C, Shu Q M, et al.Copper clusters: an effective antibacterial for eradicating multidrug-resistant bacterial infection [4] Afrasiabi S, Pourhajibagher M, Raoofian R, et al.Therapeutic applications of nucleic acid aptamers in microbial infections[J]. Journal of Biomedical Science, 2020, 27(1): 6. doi: 10.1186/s12929-019-0611-0. [5] Komerik N, Macrobert A J.Photodynamic therapy as an alternative antimicrobial modality for oral infections[J]. Journal of Environmental Pathology and Toxicology, 2006, 25(1/2): 487-504. [6] Antimicrobial Resistance Collaborators.Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis[J]. Lancet, 2022, 399(10325): 629-655. [7] Zapletal K, Machnik G, Okopień B.Polyphenols of antibacterial potential: may they help in resolving some present hurdles in medicine?[J]. Folia Biologica, 2022, 68(3): 87-96. [8] Anon. Jim O'Neill[J]. Nature Reviews Drug Discovery, 2016, 15(8): 526. doi: 10.1038/nrd.2016.160. [9] Zhen X M, Lundborg C S, Sun X S, et al.Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review[J]. Antimicrobial Resistance &Infection Control, 2019, 8: 137. doi: 10.1186/s13756-019-0590-7. [10] Willyard C.The drug-resistant bacteria that pose the greatest health threats[J]. Nature, 2017, 543(7643): 15. doi: 10.1038/nature.2017.21550. [11] Wang Y, Yang Y N, Shi Y R, et al.Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives[J]. Advanced Materials, 2020, 32(18): e1904106. doi: 10.1002/adma.201904106. [12] Paterson D L, Harris P N.Colistin resistance: a major breach in our last line of defence[J]. The Lancet Infectious Diseases, 2016, 16(2): 132-133. [13] Yu M, Chua S L.Demolishing the great wall of biofilms in gram-negative bacteria: to disrupt or disperse?[J]. Medicinal Research Reviews, 2020, 40(3): 1103-1116. [14] Li Y, Miao Y, Yang L N, et al.Recent advances in the development and antimicrobial applications of metal-phenolic networks[J]. Advanced Science, 2022, 9(27): e2202684. doi: 10.1002/advs.202202684. [15] Jelinkova P, Mazumdar A, Sur V P, et al.Nanoparticle-drug conjugates treating bacterial infections[J]. Journal of Controlled Release, 2019, 307: 166-185. [16] Gupta A, Mumtaz S, Li C H, et al.Combatting antibiotic-resistant bacteria using nanomaterials[J]. Chemical Society Reviews, 2019, 48(2): 415-427. [17] Li H, Zou Y, Jiang J.Synthesis of Ag@CuO nanohybrids and their photo-enhanced bactericidal effect through concerted Ag ion release and reactive oxygen species generation[J]. Dalton Transactions, 2020, 49(27): 9274-9281. [18] Saadi N, Alotaibi K, Hassan L, et al.Enhancing the antibacterial efficacy of aluminum foil by nanostructuring its surface using hot water treatment[J]. Nanotechnology, 2021, 32(32): 325103. doi: 10.1088/1361-6528/abfd59. [19] Cueva C, Silva M, Pinillos I, et al.Interplay between dietary polyphenols and oral and gut microbiota in the development of colorectal cancer[J]. Nutrients, 2020, 12(3): 625. doi: 10.3390/nu12030625. [20] Kumar H, Bhardwaj K, Cruz-martins N, et al. Applications of fruit polyphenols and their functionalized nanoparticles against foodborne bacteria: a mini review[J]. Molecules, 2021, 26(11): 3447. doi: 10.3390/molecules26113447. [21] Bae J Y, Seo Y H, Oh S W.Antibacterial activities of polyphenols against foodborne pathogens and their application as antibacterial agents[J]. Food Science and Biotechnology, 2022, 31(8): 985-997. [22] 姚敏, 李大祥, 谢忠稳. 茶叶主要特征性化合物抗心血管炎症研究进展[J]. 茶叶科学, 2020, 40(1): 1-14. Yao M, Li D X, Xie Z W.Recent advance on anti-cardiovascular inflammation of major characteristic compounds in tea[J]. Journal of Tea Science, 2020, 40(1): 1-14. [23] 余春燕, 朱坤, 黄建安, 等. 茶多酚对心肌保护作用的研究进展[J]. 食品科学, 2022, 43(3): 296-305. Yu C Y, Zhu K, Huang J A, et al.Advances in the study of cardioprotective effects of tea polyphenols on myocardium[J]. Food Science, 2022, 43(3): 296-305. [24] 林勇, 谢思玲, 柯菀萍, 等. 安化黑茶的降血糖作用及其机理[J]. 中国茶叶, 2023, 45(2): 1-7. Lin Y, Xie S L, Ke W P, et al.Study on the hypoglycemic effect and mechanism of Anhua dark tea[J]. China Tea, 2023, 45(2): 1-7. [25] 雷丽萍, 朱跃骅, 张剑, 等. 茶多酚对冰藏大黄鱼品质及微生物的影响[J]. 茶叶科学, 2017, 37(5): 523-531. Lei L P, Zhu Y H, Zhang J, et al.Effects of tea polyphenols on quality and microorganisms of [26] 张杨波, 饶甜甜, 刘仲华. 茶多酚的抗癌作用机制及EGCG纳米载体技术研究进展[J]. 食品工业科技, 2019, 40(16): 343-348. Zhang Y B, Rao T T, Liu Z H.Research progress on the anticancer mechanism of tea polyphenol and EGCG nanocarrier technology[J]. Science and Technology of Food Industry, 2019, 40(16): 343-348. [27] Olmedo-Juárez A, Briones-Robles T I, Zaragoza-Bastida A, et al. Antibacterial activity of compounds isolated from [28] Ignasimuthu K, Prakash R, Murthy P S, et al.Enhanced bioaccessibility of green tea polyphenols and lipophilic activity of EGCG octaacetate on gram-negative bacteria[J]. LWT, 2019, 105: 103-109. [29] 俞蓉欣, 郑芹芹, 陈红平, 等. 儿茶素生物医用纳米材料研究进展[J]. 茶叶科学, 2022, 42(4): 447-462. Yu R X, Zheng Q Q, Chen H P, et al.Recent advances in catechin biomedical nanomaterials[J]. Journal of Tea Science, 2022, 42(4): 447-462. [30] Davidson P M, Taylor T M, Schmidt S E.Chemical preservatives and natural antimicrobial compounds [M]//Doyle M P, Buchanan R L. Food microbiology: fundamentals and frontiers. Washington: ASM Press, 2012: 765-801. [31] Moulton M C, Braydich-Stolle L K, Nadagouda M N, et al. Synthesis, characterization and biocompatibility of "green" synthesized silver nanoparticles using tea polyphenols[J]. Nanoscale, 2010, 2(5): 763-770. [32] Nadagouda M N, Varma R S.Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract[J]. Green Chemistry, 2008, 10(8): 859-862. [33] Pelle F D, Scroccarello A, Sergi M, et al.Simple and rapid silver nanoparticles based antioxidant capacity assays: reactivity study for phenolic compounds[J]. Food Chemistry, 2018, 256: 342-349. [34] Farrokhnia M, Karimi S, AskariaN S. Strong hydrogen bonding of gallic acid during synthesis of an efficient AgNPs colorimetric sensor for melamine detection via dis-synthesis strategy[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6672-6684. [35] Huo J J, Jia Q Y, Wang K, et al.Metal-phenolic networks assembled on TiO2 nanospikes for antimicrobial peptide deposition and osteoconductivity enhancement in orthopedic applications[J]. Langmuir, 2023, 39(3): 1238-1249. [36] Wang Y R, Zou Y, Wu Y, et al.Universal antifouling and photothermal antibacterial surfaces based on multifunctional metal-phenolic networks for prevention of biofilm formation[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48403-48413. [37] Yu R X, Chen H P, He J, et al.Engineering antimicrobial metal-phenolic network nanoparticles with high biocompatibility for wound healing[J]. Advanced Materials, 2024, 36: 2307680. doi: 10.1002/adma.202307680. [38] Wang X J, Feng Y, Chen C F, et al.Preparation, characterization and activity of tea polyphenols-zinc complex[J]. LWT-Food Science and Technology, 2020, 131: 109810. doi: 10.1016/j.lwt.2020.109810. [39] Liu L L, Ge C, Zhang Y, et al.Tannic acid-modified silver nanoparticles for enhancing anti-biofilm activities and modulating biofilm formation[J]. Biomaterials Science, 2020, 8(17): 4852-4860. [40] Zhang C Y, Huang L J, Sun D W, et al.Interfacing metal-polyphenolic networks upon photothermal gold nanorods for triplex-evolved biocompatible bactericidal activity[J]. Journal of Hazardous Materials, 2022, 426: 127824. doi: 10.1016/j.jhazmat.2021.127824. [41] Zhang Y, He Y, Shi C X, et al.Tannic acid-assisted synthesis of biodegradable and antibacterial mesoporous organosilica nanoparticles decorated with nanosilver[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1695-1702. [42] Hu B, Shen Y, Adamcik J, et al.Polyphenol-binding amyloid fibrils self-assemble into reversible hydrogels with antibacterial activity[J]. ACS Nano, 2018, 12(4): 3385-3396. [43] Seliktar D.Designing cell-compatible hydrogels for biomedical applications[J]. Science, 2012, 336(6085): 1124-1128. [44] Hoffman A S.Hydrogels for biomedical applications[J]. Advanced Drug Delivery Reviews, 2002, 54(1): 3-12. [45] Keplinger C, Sun J Y, Foo C C, et al.Stretchable, transparent, ionic conductors[J]. Science, 2013, 341(6149): 984-987. [46] Chan K W Y, Liu G S, Song X L, et al. MRI-detectable pH nanosensors incorporated into hydrogels for [47] Larson C, Peele B, Li S, et al.Highly stretchable electroluminescent skin for optical signaling and tactile sensing[J]. Science, 2016, 351(6277): 1071-1074. [48] Saha A, Adamcik J, Bolisetty S, et al.Fibrillar networks of glycyrrhizic acid for hybrid nanomaterials with catalytic features[J]. Angewandte Chemie-International Edition, 2015, 54(18): 5408-5412. [49] Nyström G, Fernández-Ronco M P, Bolisetty S, et al. Amyloid templated gold aerogels[J]. Advanced Materials, 2016, 28(3): 472-478. [50] Shen S H, Fan D D, Yuan Y, et al.An ultrasmall infinite coordination polymer nanomedicine-composited biomimetic hydrogel for programmed dressing-chemo-low level laser combination therapy of burn wounds[J]. Chemical Engineering Journal, 2021, 426: 130610. doi: 10.1016/j.cej.2021.130610. [51] Tan H Q, Sun J J, Jin D W, et al.Coupling PEG-LZM polymer networks with polyphenols yields suturable biohydrogels for tissue patching[J]. Biomaterials Science, 2020, 8(12): 3334-3347. [52] Dong Z Q, Lin Y Y, Xu S B, et al.NIR-triggered tea polyphenol-modified gold nanoparticles-loaded hydrogel treats periodontitis by inhibiting bacteria and inducing bone regeneration[J]. Materials & Design, 2023, 225: 111487. doi: 10.1016/j.matdes.2022.111487. [53] Deng H L, Yu Z P, Chen S G, et al.Facile and eco-friendly fabrication of polysaccharides-based nanocomposite hydrogel for photothermal treatment of wound infection[J]. Carbohydrate Polymers, 2020, 230: 115565. doi: 10.1016/j.carbpol.2019.115565. [54] Zhu Y N, Zhang J M, Song J Y, et al.A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment[J]. Advanced Functional Materials, 2020, 30(6): 1905493. doi: 10.1002/adfm.201905493. [55] Ahmadian Z, Correia A, Hasany M, et al.A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for pH-responsive wound healing acceleration[J]. Advanced Healthcare Materials, 2021, 10(3): 2001122. doi: 10.1002/adhm.202001122. [56] Jin F Y, Liao S Q, Li W, et al.Amphiphilic sodium alginate-polylysine hydrogel with high antibacterial efficiency in a wide pH range[J]. Carbohydrate Polymers, 2023, 299: 120195. doi: 10.1016/j.carbpol.2022.120195. [57] Li M Y, Wang H, Hu J F, et al.Smart hydrogels with antibacterial properties built from all natural building blocks[J]. Chemistry of Materials, 2019, 31(18): 7678-7685. [58] Liang Y Q, Li Z L, Huang Y, et al.Dual-dynamic-bond cross-linkedantibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing[J]. ACS Nano, 2021, 15(4): 7078-7093. [59] Madni A, Kousar R, Naeem N, et al.Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering[J]. Journal of Bioresources and Bioproducts, 2021, 6(1): 11-25. [60] Toragall V, Jayapala N, Muthukumar S P, et al.Biodegradable chitosan-sodium alginate-oleic acid nanocarrier promotes bioavailability and target delivery of lutein in rat model with no toxicity[J]. Food Chemistry, 2020, 330: 127195. doi: 10.1016/j.foodchem.2020.127195. [61] Li F, Jin H M, Xiao J, et al.The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent[J]. Food Research International, 2018, 111: 351-360. [62] Rezazadeh N H, Buazar F, Matroodi S.Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalaized silver nanoparticles[J]. Scientific Reports, 2020, 10(1): 19615. doi: 10.1038/s41598-020-76726-7. [63] Riccucci G, Ferraris S, Reggio C, et al.Polyphenols from grape pomace: functionalization of chitosan-coated hydroxyapatite for modulated swelling and release of polyphenols[J]. Langmuir, 2021, 37(51): 14793-14804. [64] Chen Q F, Wei L T, Lai Y P, et al.Preparation and characterization of tea polyphenols-chitosan-based nanoparticles and their application in starch films[J]. Bioresources, 2022, 17(3): 4306-4322. [65] Sun X X, Wang Z, Kadouh H, et al.The antimicrobial, mechanical, physical and structural properties of chitosan-gallic acid films[J]. LWT-Food Science and Technology, 2014, 57(1): 83-89. [66] Yu Y L, Li P F, Zhu C L, et al.Multifunctional and recyclable photothermally responsive cryogels as efficient platforms for wound healing[J]. Advanced Functional Materials, 2019, 29(35): 1904402. doi: 10.1002/adfm.201904402. [67] Yu H P, Zhou Q, He D, et al.Enhanced mechanical and functional properties of chitosan/polyvinyl alcohol/hydroxypropyl methylcellulose/alizarin composite film by incorporating cinnamon essential oil and tea polyphenols[J]. International Journal of Biological Macromolecules, 2023, 253: 126859. doi: 10.1016/j.ijbiomac.2023.126859. [68] Liang J, Yan H, Puligundla P, et al.Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: a review[J]. Food Hydrocolloids, 2017, 69: 286-292. [69] Ashwar B A, Gani A.Noncovalent interactions of sea buckthorn polyphenols with casein and whey proteins: effect on the stability, antioxidant potential, and bioaccessibility of polyphenols[J]. ACS Food Science & Technology, 2021, 1(7): 1206-1214. [70] Grace M H, Yousef G G, Esposito D, et al.Bioactive capacity, sensory properties, and nutritional analysis of a shelf stable protein-rich functional ingredient with concentrated fruit and vegetable phytoactives[J]. Plant Foods for Human Nutrition, 2014, 69(4): 372-378. [71] Grace M H, Truong A N, Truong V D, et al.Novel value-added uses for sweet potato juice and flour in polyphenol- and protein-enriched functional food ingredients[J]. Food Science & Nutrition, 2015, 3(5): 415-424. [72] Ribnicky D M, Roopchand D E, Oren A, et al.Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1)[J]. Food Chemistry, 2014, 142: 349-357. [73] Mushtaq M, Gani A, Gani A, et al.Use of pomegranate peel extract incorporated zein film with improved properties for prolonged shelf life of fresh Himalayan cheese (Kalari/kradi)[J]. Innovative Food Science & Emerging Technologies, 2018, 48: 25-32. [74] Maroufi L Y, Ghorbani M, Tabibiazar M, et al.Advanced properties of gelatin film by incorporating modified kappa-carrageenan and zein nanoparticles for active food packaging[J]. International Journal of Biological Macromolecules, 2021, 183: 753-759. [75] Giteru S G, Coorey R, Bertolatti D, et al.Physicochemical and antimicrobial properties of citral and quercetin incorporated kafirin-based bioactive films[J]. Food Chemistry, 2015, 168: 341-347. [76] Kavoosi G, Dadfar S M M, Purfard A M. Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing[J]. Journal of Food Science, 2013, 78(2): E244-E250. doi: 10.1111/1750-3841.12015. [77] Cano A, Andres M, Chiralt A, et al.Use of tannins to enhance the functional properties of protein based films[J]. Food Hydrocolloids, 2020, 100: 105443. doi: 10.1016/j.foodhyd.2019.105443. [78] Han Y Y, Lin Z X, Zhou J J, et al.Polyphenol-mediated assembly of proteins for engineering functional materials[J]. Angewandte Chemie-International Edition, 2020, 59(36): 15618-15625. [79] Du T, Wang S C, Li X, et al.Hydrogen-bonded self-assembly coating as GRAS sprayable preservatives for fresh food safety[J]. Food Hydrocolloids, 2023, 145: 109089. doi: 10.1016/j.foodhyd.2023.109089. [80] Zhang Y T, Pu C F, Tang W T, et al.Effects of four polyphenols loading on the attributes of lipid bilayers[J]. Journal of Food Engineering, 2020, 282: 110008. doi: 10.1016/j.jfoodeng.2020.110008. [81] Zhang R, Li Q Y, Yang L L, et al.The antibacterial activity and antibacterial mechanism of the tea polyphenol liposomes/lysozyme-chitosan gradual sustained release composite coating[J]. International Journal of Food Science and Technology, 2022, 57(6): 3691-3701. [82] Maherani B, Arab-Tehrany E, Mozafari M R, et al.Liposomes: a review of manufacturing techniques and targeting strategies[J]. Current Nanoscience, 2011, 7(3): 436-452. [83] Huang L, Teng W D, Cao J X, et al.Liposomes as delivery system for applications in meat products[J]. Foods, 2022, 11(19): 3017. doi: 10.3390/foods11193017. [84] Das A, Konyak P M, Das A, et al.Physicochemical characterization of dual action liposomal formulations: anticancer and antimicrobial[J]. Heliyon, 2019, 5(8): e02372. doi: 10.1016/j.heliyon.2019.e02372. [85] Rao S Q, Sun M L, Hu Y, et al. [86] Sepahvand S, Amiri S, Radi M, et al.Effect of thymol and nanostructured lipid carriers (NLCs) incorporated with thymol as antimicrobial agents in sausage[J]. Sustainability, 2022, 14(4): 1973. doi: 10.3390/su14041973. [87] Ezzat H M, Elnaggar Y S R, Abdallah O Y. Improved oral bioavailability of the anticancer drug catechin using chitosomes: design, in-vitro appraisal and in-vivo studies[J]. International Journal of Pharmaceutics, 2019, 565: 488-498. [88] Joraholmen M W, Johannessen M, Gravningen K, et al.Liposomes-in-hydrogel delivery system enhances the potential of resveratrol in combating vaginal chlamydia infection[J]. Pharmaceutics, 2020, 12(12): 1203. doi: 10.3390/pharmaceutics12121203. |
[1] | 盛政, 杜文凯, 王崇崇, 张博安, 张海华, 杜琪珍. 茶多酚对茶食品中还原糖检测方法的影响[J]. 茶叶科学, 2023, 43(4): 567-575. |
[2] | 占坤, 杨正利, 徐子怡, 赖章凤, 李军, 陈罗君, 周四喜, 李明玺, 甘玉迪. 适制宁红茶茶树品种的可溶态和膜结合态多酚氧化酶特性比较[J]. 茶叶科学, 2023, 43(3): 356-366. |
[3] | 周继红, 陈蔚, 丁乐佳, 王岳飞. EGCG改善高果糖饮食小鼠代谢紊乱的作用与机制研究[J]. 茶叶科学, 2023, 43(3): 399-410. |
[4] | 俞蓉欣, 郑芹芹, 陈红平, 张劲松, 张相春. 儿茶素生物医用纳米材料研究进展[J]. 茶叶科学, 2022, 42(4): 447-462. |
[5] | 李晶, 林彩容, 黄艳, 邓旭铭, 王艺清, 孙威江. 茶多酚对农杆菌介导的植物遗传转化体系的影响[J]. 茶叶科学, 2022, 42(4): 477-490. |
[6] | 周少锋, 乾云菲, 赵真, 陈暄, 黎星辉. 不同发酵程度茶叶对茶垢形成的影响[J]. 茶叶科学, 2022, 42(1): 76-86. |
[7] | 吴鑫, 宋飞虎, 裴永胜, 朱冠宇, 姜乐兵, 宁文楷, 李臻峰, 刘本英. 基于机器视觉的茶叶微波杀青中品质变化与预测研究[J]. 茶叶科学, 2021, 41(6): 854-864. |
[8] | 王盛琳, 杨崇山, 刘中原, 柳善建, 董春旺. 基于电特性的红茶发酵中茶多酚含量快速检测方法[J]. 茶叶科学, 2021, 41(2): 251-260. |
[9] | 曹冰冰, 王秋霜, 秦丹丹, 傅冬和, 方开星, 姜晓辉, 李红建, 王青, 潘晨东, 李波, 吴华玲. 红紫芽茶花青素合成关键酶活性与重要酚类物质相关性研究[J]. 茶叶科学, 2020, 40(6): 724-738. |
[10] | 卢莉, 程曦, 张渤, 沈小霞, 刘艳, 熊丽, 袁潇, 李远华, 黎星辉. 小种红茶茶多酚和咖啡碱近红外定量分析模型的建立[J]. 茶叶科学, 2020, 40(5): 689-695. |
[11] | 姚敏, 李大祥, 谢忠稳. 茶叶主要特征性化合物抗心血管炎症研究进展[J]. 茶叶科学, 2020, 40(1): 1-14. |
[12] | 周方, 欧阳建, 黄建安, 刘仲华. 茶多酚对肠道微生物的调节作用研究进展[J]. 茶叶科学, 2019, 39(6): 619-630. |
[13] | 张姝萍,王岳飞,徐平. 茶多酚对动脉粥样硬化的预防作用与机理研究进展[J]. 茶叶科学, 2019, 39(3): 231-246. |
[14] | 祝琳, 吴龙, 陈小强, 陈学玲, 吴正奇, 石勇. 茶多酚与多糖的相互作用:作用机理及功能特性变化研究进展[J]. 茶叶科学, 2019, 39(2): 203-210. |
[15] | 曾泽媛, 罗勇, 郑楚楚, 李娟, 李勤, 林海燕, 王坤波. 茶树PPO基因家族的鉴定与分析[J]. 茶叶科学, 2018, 38(4): 385-395. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|