茶叶科学 ›› 2024, Vol. 44 ›› Issue (1): 16-26.doi: 10.13305/j.cnki.jts.2024.01.010
吴致远, 王凯博, 陈思霖, 赵碧, 申时全*
收稿日期:
2023-09-12
修回日期:
2023-11-29
出版日期:
2024-02-25
发布日期:
2024-03-13
通讯作者:
*shensq75@163.com
作者简介:
吴致远,男,研究实习员,主要从事茶营养与健康研究,yuan.yaas@icloud.com。
基金资助:
WU Zhiyuan, WANG Kaibo, CHEN Silin, ZHAO Bi, SHEN Shiquan*
Received:
2023-09-12
Revised:
2023-11-29
Online:
2024-02-25
Published:
2024-03-13
摘要: 茶因其明确的保健功能与健康益处备受人们青睐。随着对茶活性成分的深入研究,茶天然产物已被证实能够对多种疾病模型具有改善效果。痤疮是一种流行性高、复发率高的炎性皮肤病,除传统临床诊疗外,以敷贴、皮肤护理、膳食改善为代表的补充替代治疗也受到欢迎。目前市场上,越来越多的祛痘功效宣称产品在原料中添加茶源活性成分,以茶多酚、咖啡碱、茶氨酸、茶皂素为代表的茶叶天然产物在缓解痤疮上表现出极大的潜力。综述了茶叶不同功效成分在抑制皮脂分泌、减轻粉刺发生、改善皮肤微生物失调、减缓皮肤局灶性炎症的作用及分子机制,以期为含茶功效宣称产品的研发提供参考。
中图分类号:
吴致远, 王凯博, 陈思霖, 赵碧, 申时全. 茶天然产物缓解痤疮的作用机制研究进展[J]. 茶叶科学, 2024, 44(1): 16-26. doi: 10.13305/j.cnki.jts.2024.01.010.
WU Zhiyuan, WANG Kaibo, CHEN Silin, ZHAO Bi, SHEN Shiquan. Research Progress on the Mechanism of Natural Tea Components in Alleviating Acne[J]. Journal of Tea Science, 2024, 44(1): 16-26. doi: 10.13305/j.cnki.jts.2024.01.010.
[1] Ahammed G J, Li X.Hormonal regulation of health-promoting compounds in tea ( [2] Rha C S, Jeong H W, Park S, et al.Antioxidative, anti-inflammatory, and anticancer effects of purified flavonol glycosides and aglycones in green tea[J]. Antioxidants, 2019, 8(8): 278. doi: 10.3390/antiox8080278. [3] Liao Z L, Zeng B H, Wang W, et al.Impact of the consumption of tea polyphenols on early atherosclerotic lesion formation and intestinal [4] Guo J, Li K, Lin Y J, et al.Protective effects and molecular mechanisms of tea polyphenols on cardiovascular diseases[J]. Frontiers in Nutrition, 2023, 10: 1202378. doi: 10.3389/fnut.2023.1202378. [5] Zhao T T, Li C, Wang S, et al.Green tea ( [6] Woo Y R, Kim H S.Truncal acne: an overview[J]. Journal of Clinical Medicine, 2022, 11(13): 3660. doi: 10.3390/jcm11133660. [7] Kim S, Park T H, Kim W I, et al.The effects of green tea on acne vulgaris: a systematic review and meta-analysis of randomized clinical trials[J]. Phytotherapy Research, 2021, 35(1): 374-383. [8] Kalaaji A N, Wahner-Roedler D L, Sood A, et al. Use of complementary and alternative medicine by patients seen at the dermatology department of a tertiary care center[J]. Complementary Therapies in Clinical Practice, 2012, 18(1): 49-53. [9] Roengritthidet K, Kamanamool N, Udompataikul M, et al. Association between diet and acne severity: a cross-sectional study in Thai adolescents and adults [J]. Acta Dermato-Venereologica, 2021, 101(12): adv00611. doi: 10.2340/actadv.v101.569. [10] Jones V A, Patel P M, Wilson C, et al.Complementary and alternative medicine treatments for common skin diseases: a systematic review and meta-analysis[J]. JAAD International, 2021, 2: 76-93. [11] Meixiong J, Ricco C, Vasavda C, et al.Diet and acne: a systematic review[J]. JAAD International, 2022, 7: 95-112. [12] Messire G, Serreau R, Berteina-Raboin S.Antioxidant effects of catechins (EGCG), andrographolide, and curcuminoids compounds for skin protection, cosmetics, and dermatological uses: an update[J]. Antioxidants, 2023, 12(7): 1317. doi: 10.3390/antiox12071317. [13] 姜秋香. 茶多酚的祛痘护肤功效及对皮肤菌群的作用研究[D]. 昆明: 云南中医药大学, 2023. Jiang Q X.Study on the effect of tea polyphenols on acne and skin care and the effect on skin flora [D]. Kunming: Yunnan University of Chinese Medicine, 2023. [14] Velasco M V R, Tano C T N, Machado-Santelli G M, et al. Effects of caffeine and siloxanetriol alginate caffeine, as anticellulite agents, on fatty tissue: histological evaluation[J]. Journal of Cosmetic Dermatology, 2008, 7(1): 23-29. [15] 大连市皮肤病医院. 茶多酚抗痤疮外用制剂: CN201010010139.6[P].2021-05-30[2023-09-12]. Dalian Dermatosis Hospital. Tea polyphenols anti-acne topical preparation: CN201010010139.6 [P].2021-05-30[2023-09-12]. [16] 株式会社爱茉莉太平洋. 茶氨酸衍生物及其制备方法和在减轻痤疮中的应用: CN201180038302.2[P].2014-12-31[2023-09-12]. Amore Pacific Corporation. Tea amino acid derivatives and their preparation methods and applications in the alleviation of acne: CN201180038302.2 [P].2014-12-31[2023-09-12]. [17] Waranuch N, Phimnuan P, Yakaew S, et al.Antiacne and antiblotch activities of a formulated combination of [18] 刘俐, 隋丽华, 韩国柱, 等. 茶多酚乳膏治疗重症痤疮的临床疗效观察[J]. 中草药, 2009, 40(9): 1448-1449. Liu L, Sui L H, Han G Z, et al.Clinical observation of the therapeutic effect of tea polyphenols cream in the treatment of severe acne[J]. Chinese Traditional and Herbal Drugs, 2009, 40(9): 1448-1449. [19] Cao K, Liu Y, Liang N N, et al.Fatty acid profiling in facial sebum and erythrocytes from adult patients with moderate acne[J]. Frontiers in Physiology, 2022, 13: 921866. doi: 10.3389/fphys.2022.921866. [20] Bhat Y J, Latief I, Hassan I.Update on etiopathogenesis and treatment of acne[J]. Indian Journal of Dermatology, Venereology and Leprology, 2017, 83(3): 298-306. [21] Wu S H, Zhang X, Wang Y, et al.Lipid metabolism reprogramming of immune cells in acne: an update[J]. Clinical, Cosmetic and Investigational Dermatology, 2023, 16: 2391-2398. [22] Agamia N F, Abdallah D M, Sorour O, et al.Skin expression of mammalian target of rapamycin and forkhead box transcription factor O1, and serum insulin-like growth factor-1 in patients with acne vulgaris and their relationship with diet[J]. The British Journal of Dermatology, 2016, 174(6): 1299-1307. [23] Cong T X, Hao D, Wen X, et al.From pathogenesis of acne vulgaris to anti-acne agents[J]. Archives of Dermatological Research, 2019, 311(5): 337-349. [24] Moseti D, Regassa A, Kim W K.Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules[J]. International Journal of Molecular Sciences, 2016, 17(1): 124. doi: 10.3390/ijms17010124. [25] Maarouf M, Platto J F, Shi V Y.The role of nutrition in inflammatory pilosebaceous disorders: Implication of the skin-gut axis[J]. Australasian Journal of Dermatology, 2019, 60(2): e90-e98. [26] Melnik B C.Linking diet to acne metabolomics, inflammation, and comedogenesis: an update[J]. Clinical, Cosmetic and Investigational Dermatology, 2015, 8: 371-388. [27] Ganceviciene R, Graziene V, Fimmel S, et al.Involvement of the corticotropin-releasing hormone system in the pathogenesis of acne vulgaris[J]. The British Journal of Dermatology, 2009, 160(2): 345-352. [28] Ganceviciene R, Graziene V, Böhm M, et al.Increased in situ expression of melanocortin-1 receptor in sebaceous glands of lesional skin of patients with acne vulgaris[J]. Experimental Dermatology, 2007, 16(7): 547-552. [29] Musial C, Kuban-Jankowska A, Gorska-Ponikowska M.Beneficial properties of green tea catechins[J]. International Journal of Molecular Sciences, 2020, 21(5): 1744. doi: 10.3390/ijms21051744. [30] 廖培羽, 施歌. 表没食子儿茶素没食子酸酯(EGCG)治疗痤疮的作用机制研究进展[J]. 中国美容医学, 2016, 25(8): 104-106. Liao P Y, Shi G.Research progress on the mechanism of epigallocatechin gallate (EGCG) in the treatments of acne[J]. Chinese Journal of Aesthetic Medicine, 2016, 25(8): 104-106. [31] Im M, Kim S Y, Sohn K C, et al.Epigallocatechin-3-gallate suppresses IGF-I-induced lipogenesis and cytokine expression in SZ95 sebocytes[J]. Journal of Investigative Dermatology, 2012, 132(12): 2700-2708. [32] Kwack M H, Ha D L, Lee W J.Preventative effects of antioxidants on changes in sebocytes, outer root sheath cells, and [33] Rothenberg D O, Zhou C, Zhang L.A review on the weight-loss effects of oxidized tea polyphenols[J]. Molecules, 2018, 23(5): 1176. doi: 10.3390/molecules23051176. [34] Pires-de-Campos M S M, Leonardi G R, Chorilli M, et al. The effect of topical caffeine on the morphology of swine hypodermis as measured by ultrasound[J]. Journal of Cosmetic Dermatology, 2008, 7(3): 232-237. [35] Herman A, Herman A P.Caffeine’s mechanisms of action and its cosmetic use[J]. Skin Pharmacology and Physiology, 2013, 26(1): 8-14. [36] Kurokawa I, Layton A M, Ogawa R.Updated treatment for acne: targeted therapy based on pathogenesis[J]. Dermatology and Therapy, 2021, 11(4): 1129-1139. [37] Xu H X, Li H Y.Acne, the skin microbiome, and antibiotic treatment[J]. American Journal of Clinical Dermatology, 2019, 20(3): 335-344. [38] Shamloul G, Khachemoune A.An updated review of the sebaceous gland and its role in health and diseases Part 2: pathophysiological clinical disorders of sebaceous glands[J]. Dermatologic Therapy, 2021, 34(2): e14862. doi: 10.1111/dth.14862. [39] Mias C, Mengeaud V, Bessou-Touya S, et al.Recent advances in understanding inflammatory acne: deciphering the relationship between [40] Xu X X, Ran X, Tang J Q, et al.Skin microbiota in non-inflammatory and inflammatory lesions of acne vulgaris: the underlying changes within the pilosebaceous unit[J]. Mycopathologia, 2021, 186(6): 863-869. [41] Dagnelie M A, Corvec S, Saint-Jean M, et al. [42] Kistowska M, Meier B, Proust T, et al.Propionibacterium acnes promotes Th17 and Th17/Th1 responses in acne patients[J]. The Journal of Investigative Dermatology, 2015, 135(1): 110-118. [43] Omer H, McDowell A, Alexeyev O A. Understanding the role of Propionibacterium acnes in acne vulgaris: the critical importance of skin sampling methodologies[J]. Clinics in Dermatology, 2017, 35(2): 118-129. [44] Kwon K C, Won J G, Kim M S, et al.Anti-acne activity of carnitine salicylate and magnolol through the regulation of exfoliation, lipogenesis, bacterial growth and inflammation[J]. Skin Research and Technology, 2023, 29(7): e13406. doi: 10.1111/srt.13406. [45] Kuehnast T, Cakar F, Weinhäupl T, et al.Comparative analyses of biofilm formation among different [46] Acet Ö, Dikici E, Acet B Ö, et al.Inhibition of bacterial adhesion by epigallocatechin gallate attached polymeric membranes[J]. Colloids and Surfaces B: Biointerfaces, 2023, 221: 113024. doi: 10.1016/j.colsurfb.2022.113024. [47] Yoon J Y, Kwon H H, Min S U, et al.Epigallocatechin-3-gallate improves acne in humans by modulating intracellular molecular targets and inhibiting [48] Xu F W, Lv Y L, Zhong Y F, et al.Beneficial effects of green tea EGCG on skin wound healing: a comprehensive review[J]. Molecules, 2021, 26(20): 6123. doi: 10.3390/molecules26206123. [49] Hengge R.Targeting bacterial biofilms by the green tea polyphenol EGCG[J]. Molecules, 2019, 24(13): 2403. doi: 10.3390/molecules24132403. [50] Shinde S, Lee L H, Chu T.Inhibition of biofilm formation by the synergistic action of EGCG-S and antibiotics[J]. Antibiotics, 2021, 10(2): 102. doi: 10.3390/antibiotics10020102. [51] Lima E M F, Winans S C, Pinto U M. Quorum sensing interference by phenolic compounds: a matter of bacterial misunderstanding[J]. Heliyon, 2023, 9(7): e17657. doi: 10.1016/j.heliyon.2023.e17657. [52] Wang Y S, Bian Z R, Wang Y.Biofilm formation and inhibition mediated by bacterial quorum sensing[J]. Applied Microbiology and Biotechnology, 2022, 106(19/20): 6365-6381. [53] Zhu J L, Huang X Z, Zhang F, et al.Inhibition of quorum sensing, biofilm, and spoilage potential in [54] Hao S Q, Yang D, Zhao L, et al.EGCG-mediated potential inhibition of biofilm development and quorum sensing in [55] Zheng T, Cui M, Chen H, et al.Co-assembled nanocomplexes comprising epigallocatechin gallate and berberine for enhanced antibacterial activity against multidrug resistant [56] Chen Y, Gao Y, Yuan M, et al.Anti- [57] Choudhary M, Verma V, Saran R, et al.Natural biosurfactant as antimicrobial agent: strategy to action against fungal and bacterial activities[J]. Cell Biochemistry and Biophysics, 2022, 80(1): 245-259. [58] Khan M I, Ahhmed A, Shin J H, et al.Green tea seed isolated saponins exerts antibacterial effects against various strains of gram positive and gram negative bacteria, a comprehensive study [59] Albalat W, Darwish H, Abd-Elaal W H, et al. The potential role of insulin-like growth factor 1 in acne vulgaris and its correlation with the clinical response before and after treatment with metformin[J]. Journal of Cosmetic Dermatology, 2022, 21(11): 6209-6214. [60] Mattii M, Lovászi M, Garzorz N, et al.Sebocytes contribute to skin inflammation by promoting the differentiation of T helper 17 cells[J]. The British Journal of Dermatology, 2018, 178(3): 722-730. [61] Mokra D, Joskova M, Mokry J.Therapeutic effects of green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis[J]. International Journal of Molecular Sciences, 2022, 24(1): 340. doi: 10.3390/ijms24010340. [62] He Y, Yang Z J, Pi J W, et al.EGCG attenuates the neurotoxicity of methylglyoxal via regulating MAPK and the downstream signaling pathways and inhibiting advanced glycation end products formation[J]. Food Chemistry, 2022, 384: 132358. doi: 10.1016/j.foodchem.2022.132358. [63] Wu Y Y, Cui J.(-)-Epigallocatechin-3-gallate provides neuroprotection via AMPK activation against traumatic brain injury in a mouse model[J]. Naunyn-Schmiedeberg’s Archives of Pharmacology, 2020, 393(11): 2209-2220. doi: 10.1007/s00210-020-01841-1. [64] Žaloudíková M.Mechanisms and effects of macrophage polarization and its specifics in pulmonary environment[J]. Physiological Research, 2023, 72(s2): S137-S156. [65] Vassiliou E, Farias-Pereira R.Impact of lipid metabolism on macrophage polarization: implications for inflammation and tumor immunity[J]. International Journal of Molecular Sciences, 2023, 24(15): 12032. doi: 10.3390/ijms241512032. [66] Ye J, Li Q H, Zhang Y S, et al.ROS scavenging and immunoregulative EGCG@Cerium complex loaded in antibacterial polyethylene glycol-chitosan hydrogel dressing for skin wound healing[J]. Acta Biomaterialia, 2023, 166: 155-166. [67] Han M G, Wang X, Wang J, et al.Ameliorative effects of epigallocatechin-3-gallate nanoparticles on 2,4-dinitrochlorobenzene induced atopic dermatitis: a potential mechanism of inflammation-related necroptosis[J]. Frontiers in Nutrition, 2022, 9: 953646. doi: 10.3389/fnut.2022.953646. [68] Xu Y H, Zhu J, Hu J Y, et al. [69] Zeng W J, Tan Z, Lai X F, et al.Topical delivery of L-theanine ameliorates TPA-induced acute skin inflammation via downregulating endothelial PECAM-1 and neutrophil infiltration and activation[J]. Chemico-Biological Interactions, 2018, 284: 69-79. [70] Liu K H, Liu E S, Lin L, et al.L-theanine mediates the p38MAPK signaling pathway to alleviate heat-induced oxidative stress and inflammation in mice[J]. Food & Function, 2022, 13(4): 2120-2130. [71] Li Z D, Geng M Y, Dou S R, et al.Caffeine decreases hepcidin expression to alleviate aberrant iron metabolism under inflammation by regulating the IL-6/STAT3 pathway[J]. Life, 2022, 12(7): 1025. doi: 10.3390/life12071025. [72] Zhou J, Bian H Y, Wu N.Protein inhibitor of activated STAT3 (PIAS3) attenuates psoriasis and associated inflammation[J]. The Journal of Dermatology, 2023, 50(10): 1262-1271. [73] Vargas-Pozada E E, Ramos-Tovar E, Rodriguez-Callejas J D, et al. Caffeine inhibits NLRP3 inflammasome activation by downregulating TLR4/MAPK/NF-κB signaling pathway in an experimental NASH model[J]. International Journal of Molecular Sciences, 2022, 23(17): 9954. doi: 10.3390/ijms23179954. [74] Alagawany M, Abd El-Hack M E, Saeed M, et al. Nutritional applications and beneficial health applications of green tea and L-theanine in some animal species: a review[J]. Journal of Animal Physiology and Animal Nutrition, 2020, 104(1): 245-256. [75] Pan L Y, Lu Y, Dai S, et al.The role of cholesterol in modifying the lipid-lowering effects of Fuzhuan brick-tea in [76] Lee Y R, Moon G H, Shim D, et al.Neuroprotective effects of fermented tea in MPTP-induced Parkinson’s disease mouse model via MAPK signaling-mediated regulation of inflammation and antioxidant activity[J]. Food Research International, 2023, 164: 112133. doi: 10.1016/j.foodres.2022.112133. |
[1] | 李庆会, 李睿, 温晓菊, 倪德江, 王明乐, 陈玉琼. 氟胁迫条件下茶树叶部实时荧光定量PCR分析中内参基因的筛选与验证[J]. 茶叶科学, 2024, 44(1): 27-36. |
[2] | 杨琰琥, 陈潇涵, 张晓晴, 任大军, 张淑琴, 陈旺生. 基于Meta分析的2000—2022年中国茶园土壤重金属污染风险评价与来源分析[J]. 茶叶科学, 2024, 44(1): 37-52. |
[3] | 王利民, 陈诗平, 黄东风. 喷施不同浓度海藻叶面肥对茶叶产量和品质的影响[J]. 茶叶科学, 2024, 44(1): 53-61. |
[4] | 洪孔林, 吴明晖, 高博, 冯业宁. 基于改进YOLOv7-tiny的茶叶嫩芽分级识别方法[J]. 茶叶科学, 2024, 44(1): 62-74. |
[5] | 李亚涛, 周宇杰, 王少卿, 陈建能, 贺磊盈, 贾江鸣, 武传宇. 名优茶采摘机器人收获试验[J]. 茶叶科学, 2024, 44(1): 75-83. |
[6] | 张汇源, 马宽, 高婧, 金俞谷, 王玉洁, 苏祝成, 宁井铭, 陈红平, 侯智炜. 不同等级径山茶特征香气成分分析[J]. 茶叶科学, 2024, 44(1): 101-118. |
[7] | 袁俐雯, 张俊飚, 秦江楠. 我国茶业碳汇的时空演变规律和空间分异格局研究[J]. 茶叶科学, 2024, 44(1): 149-160. |
[8] | 马婕, 叶超杨, 毛丽玉. 茶类农业文化遗产价值实现的路径研究——基于31个典型案例的实证分析[J]. 茶叶科学, 2024, 44(1): 161-174. |
[9] | 王留彬, 吴立赟, 韦康, 王丽鸳. 茶树春季发芽期的QTL定位及候选基因分析[J]. 茶叶科学, 2023, 43(6): 747-756. |
[10] | 刘东娜, 龚雪蛟, 李兰英, 黄藩, 尧渝, 胥亚琼, 高远, 罗凡. 黄化茶树叶片光合及荧光特性分析[J]. 茶叶科学, 2023, 43(6): 757-768. |
[11] | 杨军, 张力岚, 张雯婧, 陈林海, 郑国华, 李毅晶, 王让剑. 福建茶树种质资源群体结构及遗传差异[J]. 茶叶科学, 2023, 43(6): 769-783. |
[12] | 陈世春, 江宏燕, 廖姝然, 陈亭旭, 王晓庆. 基于COI基因解析我国茶网蝽种群遗传多样性和遗传结构[J]. 茶叶科学, 2023, 43(6): 795-805. |
[13] | 吴淑华, 毛凯权, 陈家铭, 黎健龙, 薛璟花, 曾兰亭, 羊玉花, 辜大川. 茶小绿叶蝉侵害对茶鲜叶持嫩性及其制成乌龙茶品质相关代谢物浸出速率的影响研究[J]. 茶叶科学, 2023, 43(6): 806-822. |
[14] | 李艳春, 王义祥, 叶菁, 李兆伟. 酚酸介导下连作茶树根际病原菌Alternaria sp.及其拮抗菌Pseudomonas sp.变化[J]. 茶叶科学, 2023, 43(6): 823-834. |
[15] | 唐敏, 钟奇天, 徐进, 肖富良, 李解, 翟秀明, 侯渝嘉, 谷雨. 基于图像分析的茶树叶齿形态特征量化研究[J]. 茶叶科学, 2023, 43(6): 835-843. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|