茶叶科学 ›› 2024, Vol. 44 ›› Issue (1): 37-52.doi: 10.13305/j.cnki.jts.2024.01.002
杨琰琥1, 陈潇涵1, 张晓晴1,2,*, 任大军1,2, 张淑琴1,2, 陈旺生1,2
收稿日期:
2023-10-07
修回日期:
2023-11-04
出版日期:
2024-02-25
发布日期:
2024-03-13
通讯作者:
*zhangxiaoqing@wust.edu.cn
作者简介:
杨琰琥,男,硕士研究生,主要从事土壤重金属风险评估及修复方面的研究。
基金资助:
YANG Yanhu1, CHEN Xiaohan1, ZHANG Xiaoqing1,2,*, REN Dajun1,2, ZHANG Shuqin1,2, CHEN Wangsheng1,2
Received:
2023-10-07
Revised:
2023-11-04
Online:
2024-02-25
Published:
2024-03-13
摘要: 重金属污染是影响茶园生态环境和茶叶产品安全的重要因素之一。针对我国主要茶产区(湖北、湖南、福建、云南、贵州、四川等省份),搜集调查茶园土壤重金属Cu、Pb、As、Hg、Cd、Cr、Zn、Ni污染的相关文献,使用Meta分析方法计算单个研究的权重,从而获得各省份及全国茶园土壤重金属浓度的加权平均值,采用潜在生态风险指数法和地质积累指数法进行生态风险评估,并通过APCS-MLR模型进行来源分析。结果表明,与背景值相比,8种重金属均有一定程度的富集,其中Hg、Cd污染较为严重,Hg中度及以上风险主要分布在贵州、陕西、四川和安徽等内陆省份,Cd中度及以上风险主要分布于广东、福建、浙江、江苏、山东、海南等沿海省份,两种重金属主要表现为轻微至中度风险。与世界其他国家相比,发展中国家的茶园或农业用地重金属含量普遍较高,Cd、Hg是污染程度较为严重的元素。来源分析结果表明,第一、第二、第三、第四主成分分别为自然源、工业活动污染源、交通废气污染源、农业活动污染源,工农业活动是主要污染因素,Hg主要来自工业活动,Cd主要来自农业活动。
中图分类号:
杨琰琥, 陈潇涵, 张晓晴, 任大军, 张淑琴, 陈旺生. 基于Meta分析的2000—2022年中国茶园土壤重金属污染风险评价与来源分析[J]. 茶叶科学, 2024, 44(1): 37-52. doi: 10.13305/j.cnki.jts.2024.01.002.
YANG Yanhu, CHEN Xiaohan, ZHANG Xiaoqing, REN Dajun, ZHANG Shuqin, CHEN Wangsheng. Risk Assessment and Source Analysis of Heavy Metal Pollution in Chinese Tea Gardens in 2000-2022 Based on Meta-analysis[J]. Journal of Tea Science, 2024, 44(1): 37-52. doi: 10.13305/j.cnki.jts.2024.01.002.
[1] Garcia-Carmona M, Romero-Freire A, Sierra Aragrn M, et al.Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic[J]. Journal of Environmental Management, 2017, 191: 228-236. [2] Morais S, Costa F G, Pereira M L.Heavy metals and human health[M]//Oosthuizen J. Environmental health: emerging issues and practice. London: IntechOpen Limited, 2012: 227-246. [3] Li M Y, Liu H Y, Wu D T, et al.L-theanine: a unique functional amino acid in tea ( [4] 梅宇, 张朔. 2022年中国茶叶生产与内销形势分析[J]. 中国茶叶, 2023, 45(4): 25-30. Mei Y, Zhang S.Analysis of China's tea production and domestic sales in 2022[J]. China Tea, 2023, 45(4): 25-30. [5] 杨亚军. 中国茶树栽培学[M]. 上海: 上海科学技术出版社, 1986. Yang Y J.Chinese tea cultivation [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1986. [6] Higdon J V, Frei B.Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions[J]. Critical Reviews in Food Science and Nutrition, 2003, 43(1): 89-143. [7] 王峰, 单睿阳, 陈玉真, 等. 闽中某矿区县茶园土壤和茶叶重金属含量及健康风险[J]. 中国环境科学, 2018, 38(3): 1064-1072. Wang F, Shan R Y, Chen Y Z, et al.Concentrations and health risk assessment of heavy metals in tea garden soil and tea-leaf from a mine county in central Fujian province[J]. China Environmental Science, 2018, 38(3): 1064-1072. [8] 弓秋丽, 杨剑洲, 王振亮, 等. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834. Gong Q L, Yang J Z, Wang Z L, et al.Migration of heavy metals in the soil-tea plant system and health risks of drinking tea: a case study of Qiongzhong County, Hainan province[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 826-834. [9] Li X Y, Zhang J R, Gong Y W, et al.Status of mercury accumulation in agricultural soils across China (1976-2016)[J]. Ecotoxicology and Environmental Safety, 2020, 197: 110564. doi: 10.1016/j.ecoenv.2020.110564. [10] Zeng S Y, Ma J, Yang Y J, et al.Spatial assessment of farmland soil pollution and its potential human health risks in China[J]. Science of the Total Environment, 2019, 687: 642-653. [11] 晏利晶, 姜淼, 赵庆良, 等. 基于Meta分析的中国工矿业场地土壤重金属污染评价[J]. 环境科学研究, 2023, 36(1): 9-18. Yan L J, Jiang M, Zhao Q L, et al.Evaluation of soil heavy metal pollution in China’s industrial and mining sites based on meta-analysis[J]. Research of Environmental Sciences, 2023, 36(1): 9-18. [12] Hu B F, Shao S, Ni H, et al.Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level[J]. Environmental Pollution, 2020, 266: 114961. doi: 10.1016/j.envpol.2020.114961. [13] Du Y D, Cui B J, Zhang Q, et al.Effects of manure fertilizer on crop yield and soil properties in China: a meta-analysis[J]. Catena, 2020, 193(5): 104617. doi: 10.1016/j.catena.2020.104617. [14] Gattinger A, Muller A, Haeni M, et al.Enhanced top soil carbon stocks under organic farming[J]. Proceedings of the National Academy of Sciences, 2012, 109(44): 18226-18231. [15] Tian K, Zhao Y C, Xu X H, et al.Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: a meta-analysis[J]. Agriculture Ecosystems & Environment, 2015, 204: 40-50. [16] 胡永兴, 宿虎, 张斌, 等. 土壤重金属污染及其评价方法概述[J]. 江苏农业科学, 2020, 48(17): 33-39. Hu Y X, Su H, Zhang B, et al.Overview of soil heavy metal pollution and its evaluation methods[J]. Jiangsu Agricultural Sciences, 2020, 48(17): 33-39. [17] Muller G.Index of geoaccumulation in sediments of the Hine River[J]. Geochemical Journal. 1969, 2: 108-118. [18] 李忠武, 王磊, 冉凤维, 等. 基于APCS-MLR模型的西洞庭湖沉积物重金属来源解析[J]. 长沙理工大学学报(自然科学版), 2022, 19(2): 1-14. Li Z W, Wang L, Ran F W, et al.Source analysis of heavy metals in sediments of West Dongting Lake based on APCS-MLR model[J]. Journal of Changsha University of Science and Technology (Natural Science), 2022, 19(2): 1-14. [19] Thurston G D, Spengler J D.A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston[J]. Atmospheric Environment (1967), 1985, 19(1): 9-25. [20] Page M J, Sterne J A C, Higgins J P T, et al. Investigating and dealing with publication bias and other reporting biases in meta-analyses of health research: a review[J]. Research Synthesis Methods, 2021, 12(2): 248-259. [21] Petra M, Stephen D.A comparison of methods to detect publication bias in meta-analysis[J]. Statistics in Medicine, 2001, 20: 641-654. [22] 党向阳, 唐雨一, 李卫国, 等. 呼出气一氧化氮检测对儿童咳嗽变异性哮喘诊断价值的系统评价和meta分析[J]. 上海交通大学学报(医学版), 2023, 43(6): 680-688. Dang X Y, Tang Y Y, Li W G, et al.Diagnostic value of fractional exhaled nitric oxide in predicting cough variant asthma in children with chronic cough: a systematic review and meta-analysis[J]. Journal of Shanghai Jiaotong University (Medical Science), 2023, 43(6): 680-688. [23] Wang N, Luo Y H, Liu Z, et al.Spatial distribution characteristics and evaluation of soil pollution in coal mine areas in Loess Plateau of northern Shaanxi[J]. Scientific Reports, 2022, 12: 16440. doi: 10.1038/s41598-022-20865-6. [24] 翟传成. 含汞锑尾矿无害化处理基础研究[D]. 沈阳: 东北大学, 2017. Zhai C C.Foundamental study of detoxification of tailings containing mercuryand antimony [D]. Shenyang: Northeastern University, 2017. [25] 朱永红, 徐石辉, 王祁仑, 等. 贵州务川汞矿带木油厂矿田地质特征及成矿模式[J]. 地质与勘探, 2012, 48(1): 38-48. Zhu Y H, Xu S H, Wang Q L, et al.Geological characteristics and metallogenic model of the Muyouchang orefield in the Wuchuan mercury mineralization belt, Guizhou province[J]. Geology and Exploration, 2012, 48(1): 38-48. [26] 余慧敏, 郭熙. 鄱阳湖平原区农田土壤重金属Cd、Hg空间特征及潜在风险影响因素探析[J]. 核农学报, 2020, 34(8): 1785-1795. Yu H M, Guo X.Spatial variation in cadmium and mercury and factors influencing their potential ecological risks in farmland soil in Poyang Lake Plain, China[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(8): 1785-1795. [27] 艾小青. 劳动力跨省流动的影响机制及收益研究[J]. 广西社会科学, 2022(6): 130-137. Ai X Q.Research on the influencing mechanism and benefits of inter-provincial labor mobility[J]. Guangxi Social Sciences, 2022(6): 130-137. [28] Shacklette H T, Boerngen J G.Element concentrations in soils and other surficial materials of the conterminous United States[M]. Washington: United States Government Printing Office, 1984. [29] Reimann C, Fabian K, Birke M, et al.GEMAS: establishing geochemical background and threshold for 53 chemical elements in European agricultural soil[J]. Applied Geochemistry, 2018, 88: 302-318. [30] Alina K P.Trace elements in soils and plants (4th Edition) [M]. New York: CRC Press, 2010. [31] Yaylali-Abanuz G, Tüysüz N.Heavy metal contamination of soils and tea plants in the eastern Black Sea region, NE Turkey[J]. Environmental Earth Science, 2009, 59(1): 131-144. [32] Gedik K, Boran M.Assessment of metal accumulation and ecological risk around Rize Harbor, Turkey (Southeast Black Sea) affected by copper ore loading operations by using different sediment indexes[J]. Bulletin of Environmental Contamination and Toxicology, 2013, 90(2): 176-181. [33] Tufekcioglu A, Tufekcioglu T, Gezer E D, et al.Land-use effect on distributions of As, Cr and Cu in soils adjacent to CCA-treated utility poles in Artvin and Rize, Turkey[J]. Fresenius Environmental Bulletin, 2009, 18(5): 571-577. [34] Karak T, Bora K, Paul R K, et al.Paradigm shift of contamination risk of six heavy metals in tea ( [35] Zote L, Lalrammawia K, Buragohain A, et al.Macro-, micro-, and trace element distributions in areca nut, husk, and soil of northeast India[J]. Environmental Monitoring and Assessment, 2021, 193: 65. doi: 10.1007/s10661-021-08859-9. [36] Karak T, Abollino O, Bhattacharyya P, et al.Fractionation and speciation of arsenic in three tea gardens soil profiles and distribution of As in different parts of tea plant ( [37] Mungai T M, Owino A A, Makokha V A, et al.Occurrences and toxicological risk assessment of eight heavy metals in agricultural soils from Kenya, Eastern Africa[J]. Environmental Science and Pollution Research, 2016, 23(18): 18533-18541. [38] Alam M S, Akter S, Shemul S, et al.Assessing the quality and heavy metal contamination of soil in tea gardens around Magurchara gas blowout in Bangladesh using multivariate and soil quality index methods[J]. Journal of Hazardous Materials Advances, 2022, 7: 100127. doi: 10.1016/j.hazadv.2022.100127. [39] Rashid M H, Fardous Z, Chowdhury M A Z, et al. Determination of heavy metals in the soils of tea plantations and in fresh and processed tea leaves: an evaluation of six digestion methods[J]. Chemistry Central Journal, 2016(10): 7. doi: 10.1186/s13065-016-0154-3. [40] Ahsan D A, DelValls T A, Blasco J. Distribution of arsenic and trace metals in the floodplain agricultural soil of Bangladesh[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(1): 11-15. [41] Ho T L T, Kazuhiko E. Status of heavy metals in agricultural soils of Vietnam[J]. Soil Science & Plant Nutrition, 2001, 47(2): 419-422. [42] Bui A T K, Nguyen H T H, Nguyen M N, et al. Accumulation and potential health risks of cadmium, lead and arsenic in vegetables grown near mining sites in Northern Vietnam[J]. Environmental Monitoring and Assessment, 2016, 188: 525. doi: 10.1007/s10661-016-5535-5. [43] Romano S, Turetta C, Corami F, et al.Screening environmental risk evaluation of As and trace metals in soils and sediments from a developing area (Bắc Giang Province, Northern Vietnam)[J]. Environmental Monitoring and Assessment, 2021, 193: 134. doi: 10.1007/s10661-021-08928-z. [44] Kumssa D B, Mossa A W, Amede T, et al.Cereal grain mineral micronutrient and soil chemistry data from GeoNutrition surveys in Ethiopia and Malawi[J]. Scientific Data, 2022, 9: 443. doi: 10.1038/s41597-022-01500-5. [45] Negera M, Bufebo T, Abebe D.Levels of selected trace metals in enset ( [46] Jayawardana D T, Pitawala H M T G A, Ishiga H. Assessment of soil geochemistry around some selected agricultural sites of Sri Lanka[J]. Environmental Earth Sciences, 2014, 71(9): 4097-4106. [47] 曹冲, 宋浩楠, 谢文宝. 世界茶叶生产、消费与贸易格局及演化分析[J]. 中南农业科技, 2023, 44(7):138-145. Cao C, Song H N, Xie W B.World tea production, consumption and trade pattern and evolution analysis[J]. South-Central Agricultural Science and Technology, 2023, 44(7): 138-145. [48] 江晓薇. 提高服务业科技含量, 发展现代服务业[J]. 前线, 2001(2): 43. Jiang X W.Improve the technological content of the service industry and develop modern service industry[J]. Qianxian, 2001(2): 43. [49] Kumar V, Pandita S, Setia R.A meta-analysis of potential ecological risk evaluation of heavy metals in sediments and soils[J]. Gondwana Research, 2022, 103: 487-501. [50] Ren S Y, Song C Q, Ye S J, et al.The spatiotemporal variation in heavy metals in China's farmland soil over the past 20 years: a meta-analysis[J]. Science of The Total Environment, 2021, 806(2): 150322. doi: 10.1016/j.scitotenv.2021.150322. [51] Fei X F, Christakos G, Xiao R, et al.Improved heavy metal mapping and pollution source apportionment in Shanghai city soils using auxiliary information[J]. Science of the Total Environment, 2019, 661: 168-177. [52] 田元, 曹珂, 印萍, 等. 三门湾沿岸土壤潜在有毒元素分布、来源及环境风险评价[J]. 海洋地质前沿, 2023, 39(6): 32-45. Tian Y, Cao K, Yin P, et al.Distribution, sources and environmental risk assessment on potential toxic elements in soils along coast of Sanmen Bay[J]. Marine Geology Frontiers, 2023, 39(6): 32-45. [53] 陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 2019, 38(10): 2219-2238. Chen Y L, Weng L P, Ma J, et al.Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro-Environment Science, 2019, 38(10): 2219-2238. [54] 李霞, 张慧鸣, 徐震, 等. 农田Cd和Hg污染的来源解析与风险评价研究[J]. 农业环境科学学报, 2016, 35(7): 1314-1320. Li X, Zhang H M, Xu Z, et al.Source apportionment and risk assessment of Cd and Hg pollution in farmland[J]. Journal of Agro-Environment Science, 2016, 35(7): 1314-1320. [55] 王梅, 黄标, 孙维侠, 等. 强烈人为作用下城镇周围汞的空间变异及其积累迁移规律[J]. 土壤学报, 2011, 48(3): 506-515. Wang M, Huang B, Sun W X, et al.Spatial variability, accumulation and transfer of Hg in soils around towns under intensive human activities in the Yangtze River Delta region, China[J]. Acta Pedologica Sinica, 2011, 48(3): 506-515. [56] Buyang S J, Yi Q T, Cui H B, et al.Distribution and adsorption of metals on different particle size fractions of sediments in a hydrodynamically disturbed canal[J]. Science of the Total Environment, 2019, 670: 654-661. [57] Ma T, Sheng Y Q, Meng Y J, et al.Multistage remediation of heavy metal contaminated river sediments in a mining region based on particle size[J]. Chemosphere, 2019, 225: 83-92. [58] Lu D T, Zhang C L, Zhou Z R, et al.Pollution characteristics and source identification of farmland soils in Pb-Zn mining areas through an integrated approach[J]. Environmental Geochemistry and Health, 2022, 45: 2533-2547. [59] Zhang H, Wang Z F, Zhang Y L, et al.Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai-Tibet highway[J]. Science of the Total Environment, 2015, 521: 160-172. [60] Sheng J J, Wang X P, Gong P, et al.Heavy metals of the Tibetan top soils[J]. Environmental Science and Pollution Research, 2012, 19(8): 3362-3370. [61] Peng H, Chen Y L, Weng L P, et al.Comparisons of heavy metal input inventory in agricultural soils in North and South China: a review[J]. Science of the Total Environment, 2019, 660: 776-786. [62] 陈增文. 福建土壤重金属地积累污染特征及潜在生态危害评价[J]. 亚热带资源与环境学报, 2016, 11(4): 37-45. Chen Z W.Geo-accumulation index and potential ecological risk on soil heavy metals: an evaluation of case in Fujian[J]. Journal of Subtropical Resources and Environment, 2016, 11(4): 37-45. [63] 孙向平, 张梦君, 严理, 等. 不同类型肥料对污染稻田土壤中镉迁移转化的影响[J]. 江苏农业科学, 2018, 46(14): 296-298. Sun X P, Zhang M J, Yan L, et al.Effects of different types of fertilizers on cadmium migration and transformation in polluted paddy soil[J]. Jiangsu Agricultural Sciences, 2018, 46(14): 296-298. [64] 焦艳金, 陈志强, 张巧玲. 福建红壤侵蚀区土壤重金属污染特征及马尾松富集[J]. 福建师范大学学报(自然科学版), 2020, 36(3): 99-106. Jiao Y J, Chen Z Q, Zhang Q L.Pollution characteristics of heavy metal in soil and enrichment of masson pine in typical red soil region of Fujian[J]. Journal of Fujian Normal University (Natural Science Edition), 2020, 36(3): 99-106. [65] 叶宏萌, 李国平, 郑茂钟, 等. 武夷山茶园土壤重金属环境风险等级评价及溯源分析[J]. 福建农业学报, 2016, 31(4): 395-400. Ye H M, Li G P, Zheng M Z, et al.Risk evaluation and source tracing on heavy metal contaminations in soil at tea plantations in Wuyishan[J]. Fujian Journal of Agricultural Sciences, 2016, 31(4): 395-400. [66] 涂春霖, 杨润柏, 马一奇, 等. 黔西拖长江流域水化学演化特征及驱动因素[J]. 环境科学, 2023, 44(2): 740-751. Tu C L, Yang R B, Ma Y Q, et al.Characteristics and driving factors of hydrochemical evolution in Tuochangjiang River Basin, Western Guizhou province[J]. Environmental Science, 2023, 44(2): 740-751. |
[1] | 姜嘉胤, 董春旺, 倪益华, 徐家俊, 李杨, 马蓉. 基于离散元法的茶园仿生铲减阻性能研究[J]. 茶叶科学, 2022, 42(6): 791-805. |
[2] | 李艳春, 汪航, 李兆伟, 叶菁, 王义祥. 几种改良措施对酸化茶园土壤理化性质和微生物群落结构的影响[J]. 茶叶科学, 2022, 42(5): 661-671. |
[3] | 郭明明, 李兆群, 刘岩, 饶福强, 俞嘉伟, 吴鲁超, 周利, 陈宗懋. 双丙环虫酯对小贯小绿叶蝉的防治效果及残留评价[J]. 茶叶科学, 2022, 42(3): 358-366. |
[4] | 牛司耘, 倪康, 赵晨光, 马立锋, 阮建云. 不同地区茶园土壤硝化潜势特征研究[J]. 茶叶科学, 2019, 39(6): 731-741. |
[5] | 王峰, 单睿阳, 陈玉真, 林栋良, 臧春荣, 陈常颂, 尤志明, 余文权. 闽中某县茶园土壤-茶树-茶汤中镉含量及健康风险评价研究[J]. 茶叶科学, 2018, 38(5): 537-546. |
[6] | 王利民, 黄东风, 李清华, 何春梅, 张辉, 刘彩玲, 栗方亮, 黄毅斌. 不同培肥方式对茶园土壤团聚体中有机碳和全氮分布的影响[J]. 茶叶科学, 2018, 38(4): 342-352. |
[7] | 谢珊妮, 宗良纲, 张琪惠, 戴荣波, 潘含岳, 原强. 3种改良剂对强酸性高硒茶园土壤硒有效性调控效果与机理[J]. 茶叶科学, 2017, 37(3): 299-307. |
[8] | 王峰, 陈玉真, 吴志丹, 江福英, 张文锦, 翁伯琦, 尤志明. 施用生物质炭对酸性茶园土壤氨挥发的影响[J]. 茶叶科学, 2017, 37(1): 60-70. |
[9] | 罗毅, 苏有健, 张永利, 夏先江, 宋莉, 王烨军, 廖万有. 茶园芽孢杆菌QM7促生特性及耐酸铝机制初步研究[J]. 茶叶科学, 2016, 36(6): 567-574. |
[10] | 唐劲驰, 周波, 黎健龙, 唐颢, 操君喜. 蚯蚓生物有机培肥技术(FBO)对茶园土壤微生物特征及酶活性的影响[J]. 茶叶科学, 2016, 36(1): 45-51. |
[11] | 刘美雅, 伊晓云, 石元值, 马立锋, 阮建云. 茶园土壤性状及茶树营养元素吸收、转运机制研究进展[J]. 茶叶科学, 2015, 35(2): 110-120. |
[12] | 王峰, 陈玉真, 尤志明, 吴志丹, 江福英, 张文锦, 翁伯琦. 不同施氮量对两种茶园土壤硝化作用和pH值的影响[J]. 茶叶科学, 2015, 35(1): 82-90. |
[13] | 韩晓阳, 李智, 张丽霞, 黄晓琴. 茶园土壤高活性固氮菌的筛选鉴定及接种效果初步研究[J]. 茶叶科学, 2014, 34(5): 497-505. |
[14] | 王晟强, 郑子成, 李廷轩. 应用Le Bissonnais法研究茶园土壤团聚体稳定性[J]. 茶叶科学, 2014, 34(3): 307-314. |
[15] | 谢少华, 宗良纲, 褚慧, 汪张懿, 邱晓蕾, 马爱军, 何任红. 不同类型生物质材料对酸化茶园土壤的改良效果[J]. 茶叶科学, 2013, 33(3): 279-288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|