[1] Camp H S, Ren D, Leff T.Adipogenesis and fat-cell function in obesity and diabetes[J]. Trends in Molecular Medicine, 2002, 8(9): 442-447. [2] Sakers A, De Siqueira M K, Seale P, et al. Adipose-tissue plasticity in health and disease[J]. Cell, 2022, 185(3): 419-446. [3] Lee Y H, Mottillo E P, Granneman J G.Adipose tissue plasticity from WAT to BAT and in between[J]. Biochimica et Biophysica Acta, 2014, 1842(3): 358-369. [4] Ma Y R, Shen S Y, Yan Y, et al.Adipocyte thyroid hormone β receptor-mediated hormone action fine-tunes intracellular glucose and lipid metabolism and systemic homeostasis[J]. Diabetes, 2023, 72(5): 562-574. [5] Yang N F, Wang Y X, Tian Q, et al.Blockage of PPARγ T166 phosphorylation enhances the inducibility of beige adipocytes and improves metabolic dysfunctions[J]. Cell Death & Differentiation, 2023, 30(3): 766-778. [6] Wang Q, Li H X, Tajima K, et al.Post-translational control of beige fat biogenesis by PRDM16 stabilization[J]. Nature, 2022, 609(7925): 151-158. [7] Jia M, Xu T C, Xu Y J, et al.Dietary fatty acids activate or deactivate brown and beige fat[J]. Life Sciences, 2023, 330: 121978. doi: 10.1016/j.lfs.2023.121978. [8] Cui C J, Jin J L, Guo L N, et al.Beneficial impact of epigallocatechingallate on LDL-C through PCSK9/LDLR pathway by blocking HNF1α and activating FoxO3a[J]. Journal of Translational Medicine, 2020, 18(1): 195. doi: 10.1186/s12967-020-02362-4. [9] Lambert J D, Sang S M, Yang C S.Biotransformation of green tea polyphenols and the biological activities of those metabolites[J]. Molecular Pharmaceutics, 2007, 4(6): 819-825. doi: 10.1021/mp700075m. [10] Lee M S, Kim Y.(-)-Epigallocatechin-3-gallate enhances uncoupling protein 2 gene expression in 3T3-L1 adipocytes[J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(2): 434-436. [11] Lee M S, Shin Y, Jung S, et al.Effects of epigallocatechin-3-gallate on thermogenesis and mitochondrial biogenesis in brown adipose tissues of diet-induced obese mice[J]. Food & Nutrition Research, 2017, 61(1) : 1325307. doi: 10.1080/16546628.2017.1325307. [12] Mi Y, Liu X, Tian H, et al.EGCG stimulates the recruitment of brite adipocytes, suppresses adipogenesis and counteracts TNF-α-triggered insulin resistance in adipocytes[J]. Food & Function, 2018, 9(6): 3374-3386. [13] Nahmgoong H, Jeon Y G, Park E S, et al.Distinct properties of adipose stem cell subpopulations determine fat depot-specific characteristics[J]. Cell Metabolism, 2022, 34(3): 458-472. [14] Li F, Gao C, Yan P, et al.EGCG reduces obesity and white adipose tissue gain partly through AMPK activation in mice[J]. Front Pharmacol, 2018, 9: 1366. doi: 10.3389/fphar.2018.01366. [15] Argoud K, Wilder S P, Mcateer M A, et al.Genetic control of plasma lipid levels in a cross derived from normoglycaemic Brown Norway and spontaneously diabetic Goto-Kakizaki rats[J]. Diabetologia, 2006, 49(11): 2679-2688. [16] Szkudelska K, Okulicz M, Hertig I, et al.Resveratrol ameliorates inflammatory and oxidative stress in type 2 diabetic Goto-Kakizaki rats[J]. Biomedicine & Pharmacotherapy, 2020, 125: 110026. doi: 10.1016/j.biopha.2020.110026. [17] Brunham L R.HDL as a causal factor in atherosclerosis: insights from human genetics[J]. Current Atherosclerosis Reports, 2016, 18(12): 71. doi: 10.1007/s11883-016-0623-0. [18] Matafome P, Louro T, Rodrigues L, et al.Metformin and atorvastatin combination further protect the liver in type 2 diabetes with hyperlipidaemia[J]. Diabetes Metabolism Research and Reviews, 2011, 27(1): 54-62. [19] Kiya M, Tamura Y, Takeno K, et al.Adipose insulin resistance and decreased adiponectin are correlated with metabolic abnormalities in nonobese men[J]. The Journal of Clinical Endocrinology & Metabolism, 2021, 106(5): e2228-e2238. [20] Yang C S, Hong J.Prevention of chronic diseases by tea: possible mechanisms and human relevance[J]. Annual Review of Nutrition, 2013, 33: 161-81. [21] Nair A B, Jacob S.A simple practice guide for dose conversion between animals and human[J]. Journal of Basic and Clinical Pharmacy, 2016, 7(2): 27-31. [22] Grove K A, Sae-Tan S, Kennett M J, et al.(-)-Epigallocatechin-3-gallate inhibits pancreatic lipase and reduces body weight gain in high fat-fed obese mice[J]. Obesity, 2012, 20(11): 2311-2313. [23] Uchiyama Y, Suzuki T, Mochizuki K, et al.Dietary supplementation with (-)-epigallocatechin-3-gallate reduces inflammatory response in adipose tissue of non-obese type 2 diabetic Goto-Kakizaki (GK) rats[J]. Journal of Agricultural and Food Chemistry, 2013, 61(47): 11410-11417. [24] Jeon Y G, Kim Y Y, Lee G, et al.Physiological and pathological roles of lipogenesis[J]. Nature Metabolism, 2023, 5(5): 735-759. [25] Wang B, Du M.Increasing adipocyte number and reducing adipocyte size: the role of retinoids in adipose tissue development and metabolism[J]. Critical Reviews in Food Science and Nutrition, 2023: 1-18. doi: 10.1080/10408398.2023.2227258. [26] Inagaki T, Sakai J, Kajimura S.Transcriptional and epigenetic control of brown and beige adipose cell fate and function[J]. Nature Reviews Molecular Cell Biology, 2016, 17(8): 480-495. [27] Keinan O, Valentine J M, Xiao H, et al.Glycogen metabolism links glucose homeostasis to thermogenesis in adipocytes[J]. Nature, 2021, 599(7884): 296-301. [28] Kajimura S, Spiegelman B M, Seale P.Brown and beige fat: physiological roles beyond heat generation[J]. Cell Metabolism, 2015, 22(4): 546-559. [29] Ikeda K, Kang Q, Yoneshiro T, et al.UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis[J]. Nature Medicine, 2017, 23(12): 1454-1465. [30] Hong F, Pan S J, Guo Y, et al.PPARs as nuclear receptors for nutrient and energy metabolism[J]. Molecules, 2019, 24(14): 2545. doi: 10.3390/molecules24142545. [31] Göransson O, Kopietz F, Rider M H.Metabolic control by AMPK in white adipose tissue[J]. Trends in Endocrinology & Metabolism, 2023, 34(11): 704-717. [32] Wu L Y, Zhang L N, Li B H, et al.AMP-activated protein kinase (AMPK) regulates energy metabolism through modulating thermogenesis in adipose tissue[J]. Frontiers in Physiology, 2018, 9: 122. doi: 10.3389/fphys.2018.00122. [33] Srinivasan K, Ramarao P.Animal models in type 2 diabetes research: an overview[J]. Indian Journal of Medical Research, 2007, 125(3): 451-472. [34] Hou J, Li Z, Zhong W, et al.Temporal transcriptomic and proteomic landscapes of deteriorating pancreatic islets in type 2 diabetic rats[J]. Diabetes, 2017, 66(8): 2188-2200. [35] 雷蕾, 林智立, 王琳琳, 等. 2型糖尿病发病过程中胰岛炎症的动力学机理[J]. 科学通报, 2020, 65(35): 4139-4148. Lei L, Lin Z L, Wang L L, et al.The dynamics mechanism of islet inflammation during type 2 diabetes progress[J]. Chinese Science Bulletin, 2020, 65: 4139-4148. [36] Cai E P, Lin J K.Epigallocatechin gallate (EGCG) and rutin suppress the glucotoxicity through activating IRS2 and AMPK signaling in rat pancreatic β cells[J]. Journal of Agricultural and Food Chemistry, 2009, 57(20): 9817-9827. [37] Ortsäter H, Grankvist N, Wolfram S, et al.Diet supplementation with green tea extract epigallocatechin gallate prevents progression to glucose intolerance in db/db mice[J]. Nutrition & Metabolism, 2012, 9: 11. doi: 10.1186/1743-7075-9-11. [38] Kobayashi N, Ueki K, Okazaki Y, et al.Blockade of class IB phosphoinositide-3 kinase ameliorates obesity-induced inflammation and insulin resistance[J]. PNAS, 2011, 108(14): 5753-5758. [39] Araiz C, Yan A, Bettedi L, et al.Enhanced β-adrenergic signalling underlies an age-dependent beneficial metabolic effect of PI3K p110α inactivation in adipose tissue[J]. Nature Communications, 2019, 10(1): 1546. doi: 10.1038/s41467-019-09514-1. [40] Hwang I, Kim J B.Two faces of white adipose tissue with heterogeneous adipogenic progenitors[J]. Diabetes & Metabolism Journal, 2019, 43(6): 752-762. [41] Tian X, Xie G, Xiao H, et al.CXCR4 knockdown prevents inflammatory cytokine expression in macrophages by suppressing activation of MAPK and NF-κB signaling pathways[J]. Cell & Bioscience, 2019, 9: 55. doi: 10.1186/s13578-019-0315-x. [42] Okla M, Kim J, Koehler K, et al.Dietary factors promoting brown and beige fat development and thermogenesis[J]. Advances in Nutrition, 2017, 8(3): 473-483. [43] Wang W S, Seale P.Control of brown and beige fat development[J]. Nature Reviews Molecular Cell Biology, 2016, 17(11): 691-702. [44] Finlin B S, Memetimin H, Confides A L, et al.Human adipose beiging in response to cold and mirabegron[J]. JCI Insight, 2018, 3(15): e121510. doi: 10.1172/jci.insight.121510. [45] Whittle A J, Jiang M, Peirce V, et al.Soluble LR11/SorLA represses thermogenesis in adipose tissue and correlates with BMI in humans[J]. Nature Communications, 2015, 6: 8951. doi: 10.1038/ncomms9951. [46] Laeger T, Baumeier C, Wilhelmi I, et al.FGF21 improves glucose homeostasis in an obese diabetes-prone mouse model independent of body fat changes[J]. Diabetologia, 2017, 60(11): 2274-2284. [47] Zhang Y, Xie C, Wang H, et al.Irisin exerts dual effects on browning and adipogenesis of human white adipocytes[J]. American Journal of Physiology-Endocrinology and Metabolism, 2016, 311(2): E530-E541. doi: 10.1152/ajpendo.00094.2016. |