[1] 苏小东, 李梅. 高等植物光系统复合物结构生物学研究进展[J]. 自然杂志, 2021, 43(3): 165-175. Su X D, Li M.Advances in structural biology of photosystem complexes in higher plants[J]. Chinese Journal of Nature, 2021, 43(3): 165-175. [2] 石兰馨, 张晓平, 梁厚果. 捕光叶绿素a/b结合蛋白和cab基因[J]. 植物生理学通讯, 1995, 31(6): 470-476. Shi L X, Zhang X P, Liang H G.Light harvesting chlorophyll a/b binding protein and cab gene[J]. Plant Physiology Communications, 1995, 31(6): 470-476. [3] 罗玲. 捕光色素蛋白复合物的研究进展[J]. 现代农业科技, 2008, 1(22): 270-273. Luo L.Research progress of light-harvesting pigment protein complexes[J]. Modern Agricultural Science and Technology, 2008, 1(22): 270-273. [4] Sheen J Y, Bogorad L.Differential expression of six light-harvesting chlorophyll a/b binding protein genes in maize leaf cell types[J]. Proceedings of the National Academy of Sciences, 1986, 83(20): 7811-7815. [5] Andersson J, Wentworth M, Walters R G, et al.Absence of the lhcb1 and lhcb2 proteins of the light-harvesting complex of photosystem Ⅱ: effects on photosynthesis, grana stacking and tness[J]. The Plant Journal, 2003, 35(3): 350-361. [6] Kim E H, Li X P, Razeghifard R, et al.The multiple roles of light-harvesting chlorophyll a/b-protein complexes define structure and optimize function of Arabidopsis chloroplasts: A study using two chlorophyll b-less mutants[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2009, 1787(8): 973-984. [7] Ilíková I, Ilík P, Opatíková M, et al.Towards spruce-type photosystem II: consequences of the loss of light-harvesting proteins LHCB3 and LHCB6in Arabidopsis[J]. Plant Physiology, 2021, 187(4): 2691-2715. [8] Zhang Q, Ma C, Wang X, et al.Genome-wide identification of the light-harvesting chlorophyll a/b binding (Lhc) family in Gossypium hirsutum reveals the influence of GhLhcb2.3 on chlorophyll a synthesis[J]. Plant Biology, 2021, 23(5): 831-842. [9] Luo J, Abid M, Tu J, et al.Genome-wide identification of the LHC gene family in kiwifruit and regulatory role of AcLhcb3.1/3.2 for chlorophyll a content[J]. International Journal of Molecular Sciences, 2022, 23(12): 6528. doi: 10.3390/ijms23126528. [10] Zhang M, Senoura T, Yang X, et al.Lhcb2 gene expression analysis in two ecotypes of Sedumalfredii subjected to Zn/Cd treatments with functional analysis of SaLhcb2 isolated from a Zn/Cd hyperaccumulator[J]. Biotechnology Letters, 2011, 33(9): 1865-1871. [11] Deng Y S, Kong F Y, Zhou B, et al.Heterology expression of the tomato LeLhcb2 gene confers elevated tolerance to chilling stress in transgenic tobacco[J]. Plant Physiology and Biochemistry, 2014, 80: 318-327. [12] 李韵佳. 低温胁迫下三倍体枇杷微量捕光天线蛋白基因EjLhcb4.1/5/6的功能分析[D]. 重庆: 西南大学, 2020. Li Y J.Functional characterization of light harvesting chlorophyll a/b binding antenna proteins EjLhcb4.1/5/6 genes in triploid loquat (Eriobotrya japonica) under cold stress [D]. Chongqing: Southwest University, 2021. [13] 唐文莉. 毛竹Lhca基因的克隆和光照在转录水平对其表达的调控[D]. 北京: 中国林业科学研究院, 2008. Tang W L.Cloning Lhca genes and at the transcriptional level light intensity regulating their expression of Phyllostachys edulis [D]. Beijing: Chinese Academy of Forestry, 2008. [14] 李真, 刘明英, 韩小娇, 等. 东南景天捕光叶绿素a/b结合蛋白基因SaLhcb2的分离及功能[J]. 浙江农林大学学报, 2014, 31(6): 838-846. Li Z, Liu M Y, Han X J, et al.Characterization of a light-harvesting chlorophyll a/b binding protein (LHCB) geneSaLhcb2 in Sedum alfredii[J]. Journal of Zhejiang A & F University, 2014, 31(6): 838-846. [15] Liu M, Zhang S, Hu J, et al.Phosphorylation-guarded light-harvesting complex II contributes to broad-spectrum blast resistance in rice[J]. Proceedings of the National Academy of Sciences, 2019, 116(35): 17572-17577. [16] Ma C, Cao J, Li J, et al.Phenotypic, histological and proteomic analyses reveal multiple differences associated with chloroplast development in yellow and variegated variants from Camellia sinensis[J]. Scientific Reports, 2016, 6(1): 1-15. [17] Liu Y, Pang D, Jiang H, et al.Identifying key genes involved in yellow leaf variation in ‘MenghaiHuangye’ based on biochemical and transcriptomic analysis[J]. Functional & Integrative Genomics, 2022, 22(2): 251-260. [18] Wang L, Cao H, Chen C, et al.Complementary transcriptomic and proteomic analyses of a chlorophyll-deficient tea plant cultivar reveal multiple metabolic pathway changes[J]. Journal of Proteomics, 2016, 130: 160-169. [19] Ma C L, Chen L, Wang X C, et al.Differential expression analysis of different albescent stages of ‘AnjiBaicha’ (Camellia sinensis (L.) O. Kuntze) using cDNA microarray[J]. Scientia Horticulturae, 2012, 148: 246-254. [20] 林馨颖, 王鹏杰, 杨如兴, 等. 高茶氨酸茶树新品系‘福黄1号’黄化变异机理[J]. 中国农业科学, 2022, 55(9): 1831-1852. Lin X Y, Wang P J, Yang R X, et al.The albino mechanism of a new high theanine tea cultivar Fuhuang 1[J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1852. [21] Umate P.Genome-wide analysis of the family of light-harvesting chlorophyll a/b-binding proteins in Arabidopsis and rice[J]. Plant Signaling & Behavior, 2010, 5(12): 1537-1542. [22] Zou Z, Huang Q, An F. Genome-wide identification, classification and expression analysis of Lhc supergene family in castor bean (Ricinus communis L.) [J]. Agricultural Biotechnology, 2013, 2(6): 44. https://www. proquest.com/scholarly-journals/genome-wide-identification-classification/docview/1476279495/se-2. [23] Zou Z, Li M, Jia R, et al.Genes encoding light-harvesting chlorophyll a/b-binding proteins in papaya (Carica papaya L.) and insight into lineage-specific evolution in Brassicaceae[J]. Gene, 2020, 748: 144685. doi: 10.1016/j.gene.2020.144685. [24] Klimmek F, Sjödin A, Noutsos C, et al. Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants[J]. Plant Physiology, 2006, 140(3): 793-804. [25] Zou Z, Yang J.Genomics analysis of the light-harvesting chlorophyll a/b-binding (Lhc) superfamily in cassava (Manihot esculenta Crantz)[J]. Gene, 2019, 702: 171-181. [26] Zhao S, Gao H, Luo J, et al.Genome-wide analysis of the light-harvesting chlorophyll a/b-binding gene family in apple (Malus domestica) and functional characterization of MdLhcb4.3, which confers tolerance to drought and osmotic stress[J]. Plant Physiology and Biochemistry, 2020, 154: 517-529. doi: 10.1016/j.plaphy.2020.06.022. [27] Wang Y, Tan X, PatersonA. Different patterns of gene structure divergence following gene duplication in Arabidopsis[J]. BMC Genomics, 2013, 14(1): 652. doi: 10.1186/1471-2164-14-652. [28] Cannon S B, Mitra A, Baumgarten A, et al.The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana[J]. BMC Plant Biology, 2004, 4(10): 1-21. [29] Ye J, Lin X, Yang Z, et al.The light-harvesting chlorophyll a/b-binding proteins of photosystem Ⅱ family members are responsible for temperature sensitivity and leaf color phenotype in albino tea plant[J]. Journal of Advanced Research, 2023. doi: 10.1016/j.jare.2023.12.017. [30] 孙钦秒, 冷静, 李良璧, 等. 高等植物光系统Ⅱ捕光色素蛋白复合体结构与功能研究的新进展[J]. 植物学通报, 2000, 17(4): 289-301. Sun Q M, Leng J, Li L B, et al.Recent advances of studies on the structure and function of the light-harvesting chlorophyll a/b protein complex[J]. Chinese Bulletin of Botany, 2000, 17(4): 289-301. [31] 张毅, 尹辉, 李丹, 等. 植物环境响应启动子的诱导元件及转录因子[J]. 中国生物工程杂志, 2007(7): 122-128. Zhang Y, Yin H, Li D, et al.The cis-elements and transcription factors of plant environmental response promoters[J]. China Biotechnology, 2007(7): 122-128. [32] Perveen S, Qu M, Chen F, et al.Overexpression of maize transcription factor mEmBP-1 increases photosynthesis, biomass, and yield in rice[J]. Journal of Experimental Botany, 2020, 71(16): 4944-4957. [33] Liu X, Cheng X, Cao J, et al.UV-B regulates seasonal greening of albino leaves by modulating CsHY5-inhibiting chlorophyll biosynthesis in Camellia sinensis cv. Huangkui[J]. Plant Science, 2023, 328: 111569. doi: 10.1016/j.plantsci. 2022.111569. [34] Liu X, Cao J, Cheng X, et al.CsRVE1 promotes seasonal greening of albino Camellia sinensis cv. Huangkui by activating chlorophyll biosynthesis[J]. Tree Physiol. 2023, 43(8):1432-1443. [35] Li X W, Zhu Y L, Chen C Y, et al.Cloning and characterization of two chlorophyll A/B binding protein genes and analysis of their gene family in Camellia sinensis[J]. Scientific Reports, 2020, 10(1): 4602-4633. [36] 胡志航, 秦志远, 李静文, 等. 茶树捕光色素蛋白复合体基因CsLhcb2的鉴定及低温响应分析[J]. 茶叶科学, 2023, 43(2): 183-193. Hu Z H, Qin Z Y, Li J W, et al.Identification of the light-harvesting chlorophyll-protein complex gene CsLhcb2 and its response to low temperature in tea plants[J]. Journal of Tea Science, 2023, 43(2): 183-193. [37] 秦志远, 胡志航, 杨妮, 等. 茶树捕光色素蛋白复合体CsLhcb1基因的鉴定及干旱胁迫响应分析[J]. 茶叶学报, 2023, 64(5): 10-18. Qin Z Y, Hu Z H, Yang N, et al.Identification and drought stress response of CsLhcb1in tea plants[J]. Acta Tea Sinica, 2023, 64(5): 10-18. [38] 邹智, 杨礼富, 安峰, 等. 橡胶树AtCAB1同源基因的克隆及其在稳定与衰老期叶片中的差异分析[J]. 热带农业科学, 2013, 33(4): 30-35. Zou Z, Yang L F, An F, et al.Molecular cloning of a cDNA homologue to Arabidopsis CAB1 from Hevea brasiliensis and its different expression in mature and senescent rubber tree leaves[J]. Chinese Journal of Tropical Agriculture, 2013, 33(4): 30-35. [39] Wang S, Wang P, Gao L, et al.Characterization and complementation of a chlorophyll-less dominant mutant GL1 in Lagerstroemia indica[J]. DNA and Cell Biology, 2017, 36(5): 354-366. [40] Sattari Vayghan H, Nawrocki W J, Schiphorst C, et al.Photosynthetic light harvesting and thylakoid organization in a CRISPR/Cas9 Arabidopsis thaliana LHCB1 knockout mutant[J]. Frontiers in Plant Science, 2022, 13: 833032. doi: 10.3389/fpls.2022.833032. [41] 赵渊祥, 王好运, 梁大曲, 等. 马尾松捕光复合体Ⅱ(Lhcb)基因家族鉴定及表达分析[J]. 植物生理学报, 2023, 59(8): 1583-1595. Zhao Y X, Wang H Y, Liang D Q, et al.Identification and expression analysis of light-harvesting complex Ⅱ (Lhcb) gene family of Pinus massoniana[J]. Plant Physiology Journal, 2023, 59(8): 1583-1595. [42] 王云鹤. 苎麻Lhc基因的鉴定和表达模式研究[D]. 武汉: 华中农业大学, 2020. Wang Y H.Identification and expression profiling of Lhc genes in ramie [D]. Wuhan: Huazhong Agricultural University, 2020. [43] 成浩, 陈明, 虞富莲, 等. 茶叶片阶段性返白过程中色素蛋白复合体的变化[J]. 植物生理学通讯, 2000(4): 300-304. Chen H, Chen M, Yu F L, et al.The variation of pigment-protein complexes in the albescent stage of tea[J]. Plant Physiology Journal, 2000(4): 300-304. [44] Du Y, Chen H, Zhong W, et al.Effect of temperature on accumulation of chlorophylls and leaf ultrastructure of low temperature induced albino tea plant[J]. African Journal of Biotechnology, 2008, 7(12): 1881-1885. [45] Wu Q, Chen Z, Sun W, et al.De novo sequencing of the leaf transcriptome reveals complex light-responsive regulatory networks in Camellia sinensis cv. Baijiguan[J]. Frontiers in plant science, 2016, 7: 332. doi: 10.3389/fpls.2016.00332. |