[1] Shu W S, Zhang Z Q, Lan C Y, et al.Fluoride and aluminium concentrations of tea plants and tea products from Sichuan Province, PR China[J]. Chemosphere, 2003, 52(9): 1475-1482. [1] 邢安琪, 武子辰, 徐晓寒, 等. 茶树富集氟的特点及其机制的研究进展[J]. 茶叶科学, 2022, 42(3): 301-315. Xing A Q, Wu Z C, Xu X H, et al.Research advances of fluoride accumulation mechanisms in tea plants (Camellia sinensis)[J]. Journal of Tea Science, 2022, 42(3): 301-315. [2] 刘艳丽, 金孝芳, 曹丹, 等. 茶树铝、氟富集研究进展[J]. 植物科学学报, 2016, 34(6): 972-977. Liu Y L, Jin X F, Cao D, et al.Current progress in aluminum and fluoride accumulation in the tea plant[J]. Plant Science Journal, 2016, 34(6): 972-977. [3] Zhang W H, Cai Y, Tu C, et al.Arsenic speciation and distribution in an arsenic hyperaccumulating plant[J]. The Science of the Total Environment, 2002, 300(1/2/3): 167-177. [4] Salt D E, Blaylock M, Kumar N P, et al.Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants[J]. Biotechnology, 1995, 13(5): 468-474. [5] 王琼琼. 茶树稀土和氟铝元素积累特性及基因型差异研究[D]. 福州: 福建农林大学, 2015. Wang Q Q.Study on accumulation characteristics and genotypic differences of rare earth and aluminum fluoride in tea plants [D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. [6] 贾培凝. 氟高低富集茶树响应氟处理的生理差异及转录组分析[D]. 福州: 福建农林大学, 2021. Jia P N.Physiological differences and transcriptome analysis of tea plants enriched with high and low fluoride in response to fluoride treatment [D]. Fuzhou: Fujian Agriculture and Forestry University, 2021. [7] 李春雷. 氟对茶树幼苗生理生化的影响及其作用机制研究[D]. 武汉: 华中农业大学, 2011. Li C L.Study on the effect and mechanism of fluoride in the physiology and biochemistry of tea seedings [D]. Wuhan: Huazhong Agricultural University, 2011. [8] Zhang L, Li Q, Ma L F, et al.Characterization of fluoride uptake by roots of tea plants (Camellia sinensis (L.) O. Kuntze)[J]. Plant & Soil, 2013, 366(1/2): 659-669. [9] 向勤锃, 刘德华. 氟对人体的作用及茶树富氟的研究进展与展望[J]. 茶叶通讯, 2002(2): 34-37. Xiang Q Z, Liu D H.Progress and prospect of fluorine on human body and research of fluorine rich in tea tree[J]. Journal of Tea Communication, 2002(2): 34-37. [10] 唐茜, 赵先明, 杜晓, 等. 氟对茶树生长, 叶片生理生化指标与茶叶品质的影响[J]. 植物营养与肥料学报, 2011, 17(1): 186-194. Tang Q, Zhao X M, Du X, et al.Effects of fluorine stress on growth, physiological-biochemical characteristics and quality of tea leaves[J]. Journal of Plant Nutrition and Fertilizer, 2011, 17(1): 186-194. [11] 杨晓, 张月华, 余志, 等. 氟对茶树生理的影响及茶树耐氟机制研究进展[J]. 华中农业大学学报, 2015, 34(3): 142-146. Yang X, Zhang Y H, Yu Z, et al.Physiological effects of fluoride on tea plant and fluoride-resistant mechanism of tea[J]. Journal of Huazhong Agricultural University, 2015, 34(3): 142-146. [12] Li C L, Ni D J.Effect of fluoride on chemical constituents of tea leaves[J]. Fluoride, 2009, 42(3): 237-243. [13] 方兴汉, 吴采. 茶树某些矿质元素缺乏症和过量症的研究[J]. 中国茶叶, 1984, 6(2): 19-21, 41. Fang X H, Wu C.Study of certain mineral deficiency and excess elements in tea trees[J]. China Tea, 1984, 6(2): 19-21, 41. [14] 彭传燚. 茶树氟富集规律、亚细胞分布及在叶片表面存在形态的研究[D]. 合肥: 安徽农业大学, 2011. Peng C Y.Study on fluoride accumulation, subcellular distribution of tea plant and its chemical form in leaf surface [D]. Hefei: Anhui Agricultural University, 2011. [15] Li C, Zheng Y, Zhou J, et al.Changes of leaf antioxidant system, photosynthesis and ultrastructure in tea plant under the stress of fluorine[J]. Biologia Plantarum, 2011, 55(3): 563-566. [16] 杨贤鹏, 王宙雅, 高翔, 等. 植物表皮蜡质生物合成及调控[J]. 中国生物工程杂志, 2016, 36(9): 75-80. Yang X P, Wang Z Y, Gao X, et al.Research progress in plant cuticular wax biosynthesize and regulation[J]. Journal of Chinese Biotechnology, 2016, 36(9): 75-80. [17] Kim M S, Shim K B, Park S H, et al.Changes in cuticular waxes of developing leaves in sesame (Sesamum indicum L.)[J]. Journal of Crop Science & Biotechnology, 2009, 12(3): 161-167. [18] Kunst L, Samuels L.Plant cuticles shine: advances in wax biosynthesis and export[J]. Current Opinion in Plant Biology, 2009, 12(6): 721-727. [19] Li F L, Wu X M, Lam P, et al.Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis[J]. Plant Physiology, 2008, 148(1): 97-107. [20] Rowland O, Zheng H Q, Hepworth S R, et al.CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis[J]. Plant Physiology, 2006, 142(3): 866-877. [21] 王丽霞. 茶树对氟的富集及其生理响应机制研究[D]. 杨凌: 西北农林科技大学, 2014. Wang L X.Study on the enrichment of fluoride in tea plant and its physiological response mechanism [D]. Yangling: Northwest A&F University, 2014. [22] 郭素枝. 扫描电镜技术及其应用[M]. 厦门: 厦门大学出版社, 2006. Guo S Z.Scanning electron microscopy and its application [M]. Xiamen: Xiamen University Press, 2006. [23] Chen C J, Chen H, Zhang Y, et al.TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. [24] 吴代赦, 吴铁, 董瑞斌, 等. 植物对土壤中氟吸收、富集的研究进展[J]. 南昌大学学报(工科版), 2008(2): 103-111. Wu D S, Wu T, Dong R B, et al.Advances in absorption and enrichment of soil fluoride by plants[J]. Journal of Nanchang University (Engineering & Technology), 2008(2): 103-111. [25] Mao B G, Cheng Z J, Lei C L, et al.Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax[J]. Planta, 2011, 235(1): 39-52. [26] 李春雷. 氟对茶树幼苗生理生化的影响及其作用机制研究[D]. 武汉: 华中农业大学, 2011. Li C L.Effects of fluoride on physiology and biochemistry of tea seedlings and its mechanism [D]. Wuhan: Huazhong Agricultural University, 2011. [27] 张进献, 李冬杰, 李宏杰. 果实软化过程中细胞壁结构和组分及细胞壁酶的变化[J]. 河北林果研究, 2007, 22(2): 180-182. Zhang J X, Li D J, Li H J.Changes of cell wall structure, composition and hydrolytic enzymes in fruit softening process[J]. Forestry and Ecological Sciences, 2007, 22(2): 180-182. [28] 许疆维, 王彦芹. 花花柴蜡质合成相关基因的克隆及分析[J]. 基因组学与应用生物学, 2021, 40(s3): 3199-3208. Xu J W, Wang Y Q.Cloning and analysis of genes related to waxy synthesis in Karelinia caspia[J]. Genomics and Applied Biology, 2021, 40(s3): 3199-3208. [29] 悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展[J]. 生物技术通报, 2022, 38(12): 11-26. Yue M F, Zhang C, Wu Z Y.Advances in structure and function of plant transcription factor AP2/ERF family proteins[J]. Biotechnology Bulletin, 2022, 38(12): 11-26. [30] Lü B S, Wei K J, Hu K Q, et al.MPK14-mediated auxin signaling controls lateral root development via ERF13-regulated very-long-chain fatty acid biosynthesis[J]. Molecular Plant, 2021, 14(2): 285-297. [31] 孙英杰. MdERF2在苹果表皮蜡质合成中的作用研究[D]. 淄博: 山东理工大学, 2021. Sun Y J.Effect of MdERF2 on waxy synthesis of apple epidermis [D]. Zibo: Shandong University of Technology, 2021. [32] Park C S, Go Y S, Suh M C.Cuticular wax biosynthesis is positively regulated by WRINKLED 4, an AP2/ERF-type transcription factor, in Arabidopsis stems[J]. The Plant Journal, 2016, 88(2): 257-270. [33] Lisso J, Schröder F, Schippers J H M, et al. NFXL2 modifies cuticle properties in Arabidopsis[J]. Plant Signaling & Behavior, 2012, 7(5): 551-555. [34] Bernard A, Joubès J.Arabidopsis cuticular waxes: advances in synthesis, exportand regulation[J]. Progress in Lipid Research, 2013, 52(1): 110-129. [35] 徐劼. 茶树(Camellia sinensis L.)对铅的吸收累积及耐性机制研究[D]. 杭州: 浙江大学, 2011. Xu J.Mechanisms of lead uptake/accumulation and tolerance in tea plant (Camellia sinensis L.) [D]. Hangzhou: Zhejiang University, 2011. [36] 段瑞君, 王爱东, 陈国雄. 植物角质层基因研究进展[J]. 植物学报, 2017, 52(5): 637-651. Duan R J, Wang A D, Chen G X.Advances in study of plant cuticle genes[J]. Chinese Bulletin of Botany, 2017, 52(5): 637-651. [2] 张弋. 茶树叶片角质层蜡质组成特征与角质蒸腾的关系研究[D]. 福州: 福建农林大学, 2020. Zhang Y.Study on the correlation between cuticular wax composition and cuticular transpiration in Camellia sinensis leaves [D]. Fuzhou: Fujian Agriculture and Forestry University, 2020. |