[1] Lenc L, Kwasna H, Grabowski C S A. Microbiota in wheat roots, rhizosphere and soil in crops grown in organic and other production systems[J]. Journal of Phytopathology, 2015, 163: 245-263. [2] 邓先智, 类延宝, 沈杰, 等. 模拟根系分泌物输入对高寒退化草地土壤微生物残体的影响[J]. 生态学报, 2022, 42(20): 8311-8321. Deng X Z, Lei Y B, Shen J, et al.Effects of simulated root exudates input on soil microbial residues in the degraded alpine grassland[J]. Acta Ecologica Sinica, 2022, 42(20): 8311-8321. [3] Burns R G, DeForest J L, Marxsen J, et al. Soil enzymes in a changing environment: current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58: 216-234. [4] Yang Y, Liang C, Wang Y Q, et al.Soil extracellular enzyme stoichiometry reflects the shift from P- to N-limitation of microorganisms with grassland restoration[J]. Soil Biology and Biochemistry, 2020, 149: 107928. doi: 10.1016/j.soilbio.2020.107928. [5] Guo Z M, Zhang X Y, Green S M, et al.Soil enzyme activity and stoichiometry along a gradient of vegetation restoration at the karst critical zone observatory in southwest China[J]. Land Degradation & Development, 2019, 30(16): 1916-1927. [6] 陈彦云, 夏皖豫, 赵辉, 等. 粉垄耕作对耕地土壤酶活性、微生物群落结构和功能多样性的影响[J]. 生态学报, 2022, 42(12): 5009-5021. Chen Y Y, Xia W Y, Zhao H, et al.Effects of deep vertical rotary tillage on soil enzyme activity, microbial community structure and functional diversity of cultivated land[J]. Acta Ecologica Sinica, 2022, 42(12): 5009-5021. [7] Sharma S, Singh P, Choudhary O P, et al.Nitrogen and rice straw incorporation impact nitrogen use efficiency, soil nitrogen pools and enzyme activity in rice-wheat system in north-western India[J]. Field Crops Research, 2021, 266: 108131. doi: 10.1016/j.fcr.2021.108131. [8] Jian S Y, Li J W, Chen J, et al.Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis[J]. Soil Biology and Biochemistry, 2016, 101: 32-43. [9] Moreno J L, Bastida F, Díaz-López M, et al.Response of soil chemical properties, enzyme activities and microbial communities to biochar application and climate change in a Mediterranean agroecosystem[J]. Geoderma, 2022, 407(4): 115536. doi: 10.1016/j.geoderma.2021.115536. [10] Burns R G, DeForest J L, Marxsen J, et al. Soil enzymes in a changing environment: current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58: 216-234. [11] Zhang L P, Jia G M, Xi Y. The soil enzyme activities with age of tea in three gorges reservoir area [J]. Advanced Materials Research, 2014, 989/990/991/992/993/994: 1292-1296. [12] 张海阔, 张宝刚, 周钟昱, 等. 亚热带天然林转变为毛竹林和茶园对土壤胞外酶活性的影响[J]. 农业环境科学学报, 2022, 41(4): 826-833. Zhang H K, Zhang B G, Zhou Z Y, et al.Effects of converting natural forests to Moso bamboo and tea plantations on soil extracellular enzyme activity in subtropical China[J]. Journal of Agro-Environment Science, 2022, 41(4): 826-833. [13] 王晟强, 张喆, 叶绍明. 桂南茶园土壤团聚体酶活性对植茶年限的响应[J]. 生态学报, 2020, 40(18): 6532-6541. Wang S Q, Zhang Z, Ye S M.Response of soil aggregate-associated enzyme activities to tea planting age in the hilly region of southern Guangxi, China[J]. Acta Ecologica Sinica, 2020, 40(18): 6532-6541. [14] 姜虹, 沙丽清. 云南澜沧县景迈古茶园土壤养分和土壤酶活性研究[J]. 茶叶科学, 2008, 28(3): 214-220. Jiang H, Sha L Q.Characteristics of soil nutrients and enzyme activity of ancient tea garden in Jingmai, Lancang, Yunnan Province [J ]. Journal of Tea Science, 2008, 28(3): 214-220. [15] 王利民, 李卫华, 范平, 等. 长期培肥下红黄壤区茶园土壤酶活性的变化[J]. 茶叶科学, 2012, 32(4): 347-352. Wang L M, Li W H, Fan P, et al.Variation in soil enzyme activities under long-term fertilization of tea garden in red-yellow soil area[J]. Journal of Tea Science, 2012, 32(4): 347-352. [16] 汪洋, 杨殿林, 王丽丽, 等. 茶园多植物覆盖种植对土壤酶活性和有机碳矿化特征的影响[J]. 农业资源与环境学报, 2020, 37(3): 371-380. Wang Y, Yang D L, Wang L L, et al.Effects of cover crops on soil enzyme activity and organic carbon mineralization in a tea plantation[J]. Journal of Agricultural Resources and Environment, 2020, 37(3): 371-380. [17] Maharjan M, Sanaullah M, Razavi B S, et al.Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils[J]. Applied Soil Ecology, 2017, 113: 22-28. [18] 王峰, 陈玉真, 吴志丹, 等. 有机管理模式对茶园土壤真菌群落结构及功能的影响[J]. 茶叶科学, 2022, 42(5): 672-688. Wang F, Chen Y Z, Wu Z D, et al.Effects of organic management mode on soil fungal community structure and functions in tea gardens[J]. Journal of Tea Science, 2022, 42(5): 672-688. [19] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. Lu R K.Analysis method in soil agricultural chemistry [M]. Beijing: China Agricultural Science and Technology Press, 2000. [20] Hou Q, Wang W X, Yang Y, et al.Rhizosphere microbial diversity and community dynamics during potato cultivation[J]. European Journal of Soil Biology, 2020, 98: 103176. doi: 10.1016/j.ejsobi.2020.103176. [21] Tedersoo L, Bahram M, Põlme S, et al.Global diversity and geography of soil fungi[J]. Science, 2014, 36: 6213. doi: 10.1126/science.1256688. [22] Morrison-Whittle P, Lee S A, Goddard M R.Fungal communities are differentially affected by conventional and biodynamic agricultural management approaches in vineyard ecosystems[J]. Agriculture, Ecosystems Environment, 2017, 246: 306-313. [23] Tsiafouli M A, Thébault E, Sgardelis S P, et al.Intensive agriculture reduces soil biodiversity across Europe[J]. Global Change Biology, 2015, 21: 973-985. [24] Chen J W, Li J W, Yang Y R, et al.Effects of conventional and organic agriculture on soil arbuscular mycorrhizal fungal community in low-quality farmland[J]. Frontiers in Microbiology, 2022, 13: 914627. doi: 10.3389/fmicb.2022. 914627. [25] 仝利红, 蒋珊, 祝凌, 等. 有机种植对温室土壤有机碳库和酶活性的影响[J]. 中国土壤与肥料, 2020(6): 75-82. Tong L H, Jiang S, Zhu L, et al.Effects of organic planting on soil carbon pool and enzyme activity in greenhouse[J]. Soils and Fertilizers Sciences in China, 2020(6): 75-82. [26] Stazi S R, Mancinelli R, Marabottini R, et al.Influence of organic management on As bioavailability: soil quality and tomato As uptake[J]. Chemosphere, 2018, 211: 352-359. [27] 李思萌, 于军, 周正立, 等. 有机种植对土壤主要理化性质及重金属含量的影响[J]. 江苏农业科学, 2017, 45(2): 253-257. Li S M, Yu J, Zhou Z L, et al.Effect of organic planting on the main physical and chemical properties of soil and heavy metal content[J]. Jiangsu Agricultural Sciences, 2017, 45(2): 253-257. [28] Bai Z G, Caspari T, Gonzalez M R, et al.Effects of agricultural management practices on soil quality: a review of long-term experiments for Europe and China[J]. Agriculture, Ecosystems Environment, 2018, 265: 1-7. [29] 曹春霞, 朱升海, 颜越, 等. 有机管理对不同土地利用方式下土壤质量的影响[J]. 中国生态农业学报(中英文), 2021, 29(3): 474-482. Cao C X, Zhu S H, Yan Y, et al.Effect of organic management on soil quality under different land use types[J]. Chinese Journal of Eco-Agriculture, 2021, 29(3): 474-482. [30] Lori M, Symnaczik S, Mäder P, et al.Organic farming enhances soil microbial abundance and activity: a meta-analysis and meta-regression[J]. PLoS One, 2017, 12(7): e0180442. doi: 10.1371/journal.pone.0180442. [31] 颜鹏, 韩文炎, 李鑫, 等. 中国茶园土壤酸化现状与分析[J]. 中国农业科学, 2020, 53(4): 795-801. Yan P, Han W Y, Li X, et al.Present situation and analysis of soil acidification in Chinese tea garden[J]. Scientia Agricultura Sinica, 2020, 53(4): 795-801. [32] 陈彬彬, 王宏, 郑秋萍, 等. 福建省区域酸雨特征及成因分析[J]. 气象与环境学报, 2016, 32(4): 70-76. Chen B B, Wang H, Zheng Q P, et al.Characteristics and causes of regional acid rain in Fujian province[J]. Journal of Meteorology and Environment, 2016, 32(4): 70-76. [33] 阮建云, 吴洵. 钾、镁营养供应对茶叶品质和产量的影响[J]. 茶叶科学, 2003, 23(s1): 21-26. Ruan J Y, Wu X.Productivity and quality response of tea to balanced nutrient management including K and Mg[J]. Journal of Tea Science, 2003, 23(s1): 21-26. [34] 吴洵. 第四纪低丘红壤茶园钾的成土迁移和丰缺诊断[J]. 茶叶科学, 1994, 14(1): 9-16. Wu X.Movement of potassium in the soil during its development from quaternary red clay and the diagnosis of potassium deficiency in tea gardens of low-hilly red-earth areas[J]. Journal of Tea Science, 1994, 14(1): 9-16. [35] 韩文炎, 阮建云, 林智. 茶园土壤主要营养障碍因子及系列茶树专用肥的研制[J]. 茶叶科学, 2002, 22(1): 70-77, 65. Han W Y, Ruan J Y, Lin Z.The major nutritional limitingfactors in tea soils and development of tea speciality fertilizer series[J]. Journal of Tea Science, 2002, 22(1): 70-74, 65. [36] 张福锁. 协调作物高产与环境保护的养分资源综合管理技术研究与应用[M]. 北京: 中国农业大学出版社, 2008. Zhang F S.Study and application of integrated nutrient management synchronizing high yield and environment protection [M]. Beijing: China Agricultural University Press, 2008. [37] 陈玉真, 王峰, 吴志丹, 等. 林地转变为茶园对土壤细菌群落结构与多样性的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48(4): 97-106. Chen Y Z, Wang F, Wu Z D, et al.Effects of forestland to tea garden conversion on soil bacterial community and diversity[J]. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(4): 97-106. [38] 陈玉真, 王峰, 吴志丹, 等. 林地转变为茶园对土壤固氮菌群落结构及多样性的影响[J]. 应用与环境生物学报, 2020, 26(5): 1096-1106. Chen Y Z, Wang F, Wu Z D, et al.Effects of soil nitrogen-fixing bacteria community and diversity after converting forestland into tea garden[J]. Chinese Journal of Applied & Environmental Biology, 2020, 26(5): 1096-1106. [39] 杨亚军. 中国茶树栽培学[M]. 上海: 上海科学技术出版社, 2005: 374-432. Yang Y J.Tea cultivation science in China [M]. Shanghai: Shanghai Science and Technology Press, 2005: 374-432. [40] Fan Z Z, Lu S Y, Liu S, et al.The effects of vegetation restoration strategies and seasons on soil enzyme activities in the Karst landscapes of Yunnan, southwest China[J]. Journal of Forestry Research, 2020, 31(5): 1949-1957. [41] Zhao Z W, Ge T D, Gunina A, et al.Carbon and nitrogen availability in paddy soil affects rice photosynthate allocation, microbial community composition, and priming: combining continuous 13C labeling with PLFA analysis[J]. Plant and Soil, 2019, 445(1/2): 137-152. [42] Qin X, Liu Y T, Huang Q Q, et al.Effects of sepiolite and biochar on enzyme activity of soil contaminated by Cd and atrazine[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(5): 642-648. [43] Zhou Z H, Wang C K, Jin Y.Stoichiometric responses of soil microflora to nutrient additions for two temperate forest soils[J]. Biology and Fertility of Soils, 2017, 53(4): 397-406. [44] 王海斌, 陈晓婷, 丁力, 等. 连作茶树根际土壤自毒潜力, 酶活性及微生物群落功能多样性分析[J]. 热带作物学报, 2018, 39(5): 26-31. Wang H B, Chen X T, Ding L, et al.Analysis on autotoxic potential, enzyme activity and microbial community function diversity of the rhizosphere soils from tea plants with continuous cropping years[J]. Chinese Journal of Tropical Crops, 2018, 39(5): 26-31. [45] 张英, 武淑霞, 雷秋良, 等. 不同类型粪肥还田对土壤酶活性及微生物群落的影响[J]. 土壤, 2022, 54(6): 1175-1184. Zhang Y, Wu S X, Lei Q L, et al.Effects of different manures on soil enzyme activity and microbial community[J]. Soils, 2022, 54(6): 1175-1184. [46] 王文婷, 王蓉, 牛翠平, 等. 西双版纳农林复合橡胶林土壤多营养级生物网络结构[J]. 生物多样性, 2023, 31(6): 132-145. Wang W T, Wang R, Niu C P, et al.Soil multitrophic ecological network structure of agroforestry rubberplantation in Xishuangbanna[J]. Biodiversity Science, 2023, 31(6): 132-145. [47] Liu C A, Nie Y, Zhang Y M, et al.Introduction of a leguminous shrub to a rubber plantation changed the soil carbon and nitrogen fractions and ameliorated soil environment[J]. Scientific Reports, 2018, 8: 17324. doi: 10.1038/s41598-018-35762-0. [48] 王鹏, 祝丽香, 陈香香, 等. 桔梗与大葱间作对土壤养分、微生物区系和酶活性的影响[J]. 植物营养与肥料学报, 2018, 24(3): 668-675. Wang P, Zhu L X, Chen X X, et al.Effects of Platycodon grandiflorum and Allium fistulosum intercropping on soil nutrients, microorganism and enzyme activity[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 668-675. [49] Chen L X, Zhang C, Duan W B.Temporal variations in phosphorus fractions and phosphatase activities in rhizosphere and bulk soil during the development of Larixol gensis plantations[J]. Journal of Plant Nutrition and Soil Science, 2016, 179(1): 67-77. [50] Hou E Q, Luo Y Q, Kuang Y W, et al.Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems[J]. Nature Communications, 2020, 11: 637. doi: 10.1038/s41467-020- 14492-w. [51] Fan Y X, Lin F, Yang L M, et al.Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem[J]. Biology and Fertility of Soils, 2018, 154: 149-161. [52] Zhang G N, Chen Z, Zhang A, et al.Phosphorus composition and phosphatase activities in soils affected by long-term application of pig manure and inorganic fertilizers[J]. Communications in Soil Science and Plant Analysis, 2014, 45(14): 1866-1876. [53] Chen Y X, Wei T X, Sha G L, et al.Soil enzyme activities of typical plant communities after vegetation restoration on the Loess Plateau, China[J]. Applied Soil Ecology, 2022(170): 104292. doi: 10.1016/j.apsoil.2021.104292. [54] 王瑞, 宋祥云, 柳新伟. 黄河三角洲不同植被类型土壤酶活性的季节变化[J]. 生态环境学报, 2022, 31(1): 62-69. Wang R, Song X Y, Liu X W.Seasonal characteristics of soil enzymes in different vegetations in the Yellow River Delta[J]. Ecology and Environmental Sciences, 2022, 31(1): 62-69. [55] 杨海滨, 李中林, 邓敏, 等. 不同施肥措施对重庆茶园土壤氮转化酶活性的影响[J]. 应用与环境生物学报, 2020, 26(5): 1107-1114. Yang H B, Li Z L, Deng M, et al.Effects of the combined application of different fertilizers and urea on nitrogen transformation enzyme activities in tea-garden soil from Chongqing[J]. Chinese Journal of Applied & Environmental Biology, 2020, 26(5): 1107-1114 [56] 刘谣, 刘金超, 宋钰珑, 等. 季节变化对川西亚高山森林土壤酶活性及化学计量特征的影响[J]. 四川农业大学学报, 2023, 41(3): 456-463. Liu Y, Liu J C, Song Y L, et al.Effects of seasonal changes on soil enzyme activities and their stoichiometric characteristics of subalpine forests in Western Sichuan[J]. Journal of Sichuan Agricultural University, 2023, 41(3): 456-463. [57] Zhao S C, Li K J, Zhou W, et al.Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China[J]. Agriculture, Ecosystems & Environment, 2016, 216: 82-88. [58] Dick W A, Cheng L, Wang P.Soil acid and alkaline phosphatase activity as pH adjustment indicators[J]. Soil Biology and Biochemistry, 2000, 32(13): 1915-1919. [59] 曹瑞, 杨万勤, 袁吉, 等. 马尾松人工林土壤有机层和矿质土壤层酶活性随雨旱季的变化[J]. 生态学报, 2022, 42(19): 8031-8040. Cao R, Yang W Q, Yuan J, et al.Changes of soil enzyme activities in soil organic layer and mineral soil layer in the Masson pine plantation with critical periods[J]. Acta Ecologica Sinica, 2022, 42(19): 8031-8040. [60] Wang Y F, Zheng M H, Wang S H, et al.Effects of long-term nitrogen and phosphorus additions on soil enzyme activities related N and P cycle in two plantations in South China[J]. Journal of Tropical and Subtropical Botany, 2022, 29(3): 244-250. [61] 贾曼莉, 郭宏, 李会科. 渭北生草果园土壤有机碳矿化及其与土壤酶活性的关系[J]. 环境科学, 2014, 35(7): 2777-2784. Jia M L, Guo H, Li H K.Mineralization of soil organic carbon and its relationship with soil enzyme activities in apple orchard in Weibei[J]. Environmental Science, 2014, 35(7): 2777-2784. [62] Wang S X, Liang X Q, Chen Y X, et al.Phosphorus loss potential and phosphatase activity under phosphorus fertilization in long-term paddy wetland agroecosystems[J]. Soil Science Society of America Journal, 2012, 76(1): 161-167. [63] Richardson A E, Simpson R J.Soil microorganisms mediating phosphorus availability update on microbial phosphorus[J]. Plant Physiology, 2011, 156(3): 989-996. [64] Tan H, Barret M, Mooij M J, et al.Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils[J]. Biology and Fertility of Soils, 2013, 49(6): 661-672. [65] Liu X C, Zhang S T.Nitrogen addition shapes soil enzyme activity patterns by changing pH rather than the composition of the plant and microbial communities in an alpine meadow soil[J]. Plant and Soil, 2019, 440(1): 11-24. |