[1] 马哲宇, 高可可, 李桂新, 等. STOP1介导多种逆境响应分子机制的研究进展[J]. 植物生理学报, 2023, 59(4): 773-781. Ma Z Y, Gao K K, Li G X, et al.Research progress of the molecular mechanisms of STOP1 in various stress responses[J]. Plant Physiology Journal, 2023, 59(4): 773-781. [2] Iuchi S, Koyama H, Iuchi A, et al.Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance[J]. Proceedings of the National Academy of Sciences, 2007, 104(23): 9900-9905. [3] Yamaji N, Huang C F, Nagao S, et al.A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice[J]. Plant Cell, 2009, 21(10): 3339-3349. [4] Yoshinao O, Hiroki I, Yuriko K, et al.Characterization of AtSTOP1 orthologous genes in tobacco and other plant species[J]. Plant Physiology, 2013, 162(4): 1937-1946. [5] Luísa G A, César B, Pilar P, et al.Molecular characterization of TaSTOP1 homoeologues and their response to aluminium and proton (H+) toxicity in bread wheat (Triticum aestivum L.)[J]. BMC Plant Biology, 2013, 13(1): 134. doi: 10.1186/1471-2229-13-134. [6] 丛亚辉, 王婷婷, 柳聚阁, 等. 大豆耐铝毒候选基因GmSTOP1的克隆与表达分析[J]. 作物学报, 2015, 41(12):1802-1809. Cong Y H, Wang T T, Liu J G, et al.Cloning and expression analysis of tolerance to aluminum-toxicity candidate gene GmSTOP1 in soybean[J]. Acta Agronomica Sinica, 2015, 41(12): 1802-1809. [7] 张宝云. 紫花苜蓿铝胁迫响应基因MsMATE与MsSTOP1的功能与表达调控研究[D]. 重庆: 重庆大学, 2017. Zang B Y.Function and expression regulation of aluminum-responsive genes MsMATE and MsSTOP1 in Medicago sativa [D]. Chongqing: Chongqing University, 2017. [8] 罗佳佳, 向晨莹, 刘攀道, 等. 柱花草SgSTOP1和SgSTOP2基因的克隆与表达分析[J]. 草业科学, 2019, 36(3): 704-712. Luo J J, Xiang C Y, Liu P D, et al.Cloning and expression analysis of SgSTOP1 and SgSTOP2 in Stylosanthes guianensis[J]. Pratacultural Science, 2019, 36(3): 704-712. [9] 张永福, 徐仕琴, 陈姣, 等. 葡萄耐铝毒基因STOP1的克隆与表达分析[J]. 西南农业学报, 2022, 35(3): 588-595. Zhang Y F, Xu S Q, Chen J, et al.Cloning and expression analysis of tolerance to aluminum-toxicity gene STOP1 in Vitis[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(3): 588-595. [10] Kobayashi Y, Ohyama Y, Kobayashi Y, et al.STOP2 activates transcription of several genes for Al- and low pH-tolerance that are regulated by STOP1 in Arabidopsis[J]. Molecular Plant, 2014, 7(2): 311-322. [11] Sadhukhan A, Enomoto T, Kobayashi Y, et al.Sensitive to proton rhizotoxicity1 regulates salt and drought tolerance of Arabidopsis thaliana through transcriptional regulation of CIPK23[J]. Plant and Cell Physiology, 2019, 60(9): 2113-2126. [12] Enomoto T, Tokizawa M, Ito H, et al. STOP1 regulates the expression of HsfA2 and GDHs that are critical for low-oxygen tolerance in Arabidopsis[J]. Journal of Experimental Botany, 2019, 70(12): 3297-3311. [13] 田文昊. 拟南芥STOP1蛋白协同氮磷营养的分子机制研究[D]. 杭州: 浙江大学, 2021. Tian W H.Mechanisms of nitrogen and phosphorus acquisition coordinated by STOP1 in Arabidopsis [D]. Hangzhou: Zhejiang University, 2021. [14] 方翔, 胡国策, 孙琪璐, 等. 氮素形态对茶树叶片品质及其氮代谢相关基因的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48(2): 52-59. Fang X, Hu G C, Sun Q L, et al.Effects of nitrogen forms on tea quality and nitrogen metabolism related genes in tea leaves[J]. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(2): 52-59. [15] Britto D T, Kronzucker H J.NH4+ toxicity in higher plants: a critical review[J]. Journal of Plant Physiology, 2002, 159(6): 567-584. [16] Bittsánszky A, Pilinszky K, Gyulai G, et al.Overcoming ammonium toxicity[J]. Plant Science, 2015, 231(1): 184-190. [17] 范子晗. 柑橘铵毒害产生机制及缓解措施研究[D]. 重庆: 西南大学, 2021. Fan Z H.Study on the mechanism and relative alleviation measures of ammonium toxicity to citrus [D]. Chongqing: Southwest University, 2021. [18] Tang D D, Liu M Y, Zhang Q F, et al.Preferential assimilation of NH4+ over NO3- in tea plant associated with genes involved in nitrogen transportation, utilization and catechins biosynthesis[J]. Plant Science, 2020, 29: 110369. doi: 10.1016/j.plantsci.2019.110369. [19] Wang Y, Wang Y M, Lu Y T, et al.Influence of different nitrogen sources on carbon and nitrogen metabolism and gene expression in tea plants (Camellia sinensis L.)[J]. Plant Physiology and Biochemistry: PPB, 2021, 167(1): 561-566. [20] 胡国策, 蒋家月, 田坤红, 等. 氮素形态和水平对茶树生理特性的影响[J]. 安徽农业大学学报, 2018, 45(4): 588-593. Hu G C, Jang J Y, Tian K H, et al.Effects of nitrogen forms and nitrogen levels on the physiological characteristics of tea plants[J]. Journal of Anhui Agricultural University, 2018, 45(4): 588-593. [21] 李勇. 茶树响应铝的遗传变异及铝富集候选基因挖掘[D]. 武汉: 华中农业大学, 2017. Li Y.The genetic variation of tea plant [Camellia sinensis (L.) O. Ktze.] in response to aluminum and candidate genes related to its Al accumulation [D]. Wuhan: Huazhong Agricultural University, 2017. [22] 李营营. 茶树根系酸铝胁迫与茶氨酸合成积累的相关性研究[D]. 合肥: 安徽农业大学, 2019. Li Y Y.Study on the correlation between aluminum stress under acidic conditions and theanine synthesis and accumulation in roots of tea plant (Camellia sinensis L.) [D]. Hefei: Anhui Agricultural University, 2019. [23] Ruan J Y, Gerendas J, Härdter R, et al.Effect of root zone pH and form and concentration of nitrogen on accumulation of quality-related components in green tea[J]. Journal of the Science of Food and Agriculture, 2007, 87(8): 1505-1516. [24] Newman L, Duffus A L J, Lee C. Using the free program MEGA to build phylogenetic trees from molecular data[J]. The American Biology Teacher, 2016, 78(7): 608-612. [25] Chen C J, Chen H, Zhang Y, et al.TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. [26] Tang D D, Jiao Z X, Zhang Q F, et al.Glutamate dehydrogenase isogenes CsGDHs cooperate with glutamine synthetase isogenes CsGSs to assimilate ammonium in tea plant (Camellia sinensis L.)[J]. Plant Science, 2021, 312: 111031. doi: 10.1016/j.plantsci.2021.111031. [27] 汤丹丹. 茶树胞质型谷氨酰胺合成酶基因CsGS1s的克隆及其对不同氮源的响应[D]. 北京: 中国农业科学院, 2018. Tang D D.Isolation of cytosolic glutamine synthetase genes CsGS1s and their experssion in tea plant (Camellia sinensis L.) under different nitrogen forms [D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. [28] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the ${{2}^{\text{-}\Delta \Delta {{\text{C}}_{\text{T}}}}}$ method[J]. Methods, 2001, 25(4): 402-408. [29] Tian W H, Ye J Y, Cui M Q, et al.A transcription factor STOP1-centered pathway coordinates ammonium and phosphate acquisition in Arabidopsis[J]. Molecular Plant, 2021, 14(9): 1554-1568. [30] Sun L, Di D W, Li G, et al.Endogenous ABA alleviates rice ammonium toxicity by reducing ROS and free ammonium via regulation of the SAPK9-bZIP20 pathway[J]. Journal of Experimental Botany, 2020, 71(15): 4562-4577. [31] 彭文婷. 大豆GmSTOP1s基因家族的克隆和功能研究[D]. 广州: 华南农业大学, 2016. Peng W T.Isolation and function analysis of GmSTOP1s gene family [D]. Guangzhou: South China Agricultural University, 2016. [32] 韩庆芬, 陈海飞, 张振华. 不同生态型拟南芥耐铵毒害差异的生理机制[J]. 植物营养与肥料学报, 2019, 25(7): 1185-1193. Han Q F, Chen H F, Zhang Z H, et al.Physiological mechanisms of tolerance to ammonium toxicity in different ecotypes of Arabidopsis thaliana[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1185-1193. [33] Vega-Mas I, Rossi M T, Gupta K J, et al.Tomato roots exhibit in vivo glutamate dehydrogenase aminating capacity in response to excess ammonium supply[J]. Journal of Plant Physiology, 2019, 239(1): 83-91. [34] Tokizawa M, Enomoto T, Ito H, et al.High affinity promoter binding of STOP1 is essential for early expression of novel aluminum-induced resistance genes GDH1 and GDH2 in Arabidopsis[J]. Journal of Experimental Botany, 2021, 72(7): 2769-2789. [35] Liu M Y, Tang D D, Shi Y Z, et al.Short-term inhibition of glutamine synthetase leads to reprogramming of amino acid and lipid metabolism in roots and leaves of tea plant (Camellia sinensis L.)[J]. BMC Plant Biology, 2019, 19(1): 425. doi: 10.1186/s12870-019-2027-0. |