[1] 程琳, 郝艳林, 曹思睿, 等. 茶树基因组研究进展[J]. 信阳师范学院学报(自然科学版), 2021, 34(4): 606-613. Cheng L, Hao Y L, Cao S R, et al.Advances in genome research of tea plant[J]. Journal of Xinyang Normal University (Natural Science Edition), 2021, 34(4): 606-613. [2] Xia E H, Zhang H B, Sheng J.The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Molecular Plant, 2017, 10(6): 866-877. [3] Wei C L, Yang H, Wang S B, et al.Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. PNAS, 2018, 115(18): E4151-E4158. [4] Xia E H, Tong W, Wu Q, et al.Tea plant genomics: achievements, challenges and perspectives[J]. Horticulture Research, 2020, 7: 7. doi: 10.1038/s41438-019-0225-4. [5] Xia E H, Tong W, Hou Y, et al.The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation[J]. Molecular Plant, 2020, 13(7): 1013-1026. [6] Chen J D, Zheng C, Ma J Q, et al.The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidization event in tea plant[J]. Horticulture Research, 2020, 7: 63. doi: 10.1038/s41438-020-0288-2. [7] Wang X C, Feng H, Chang Y X, et al.Population sequencing enhances understanding of tea plant evolution[J]. Nature Communications, 2020, 11: 4447. doi: 10.1038/s41467-020-18228-8. [8] Lin P, Wang K L, Wang Y P, et al.The genome of oil-camellia and population genomics analysis provide insights into seed oil domestication[J]. Genome Biology, 2022, 23: 14. doi: 10.1186/s13059-021-02599-2. [9] Xiang P, Zhu Q F, Zhang L H, et al.Integrative analyses of transcriptome and metabolome reveal comprehensive mechanisms of epigallocatechin-3-gallate (EGCG) biosynthesis in response to ecological factors in tea plant (Camellia sinensis)[J]. Food Research International, 2023, 166: 112591. doi: 10.1016/j.foodres.2023.112591. [10] Zhang Y R, Fu J M, Zhou Q Y, et al.Metabolite profiling and transcriptome analysis revealed the conserved transcriptional regulation mechanism of caffeine biosynthesis in tea and coffee plants[J]. Journal of Agricultural and Food Chemistry, 2022, 70(10): 3239-3251. [11] Zheng Y C, Wang P J, Chen X J, et al.Integrated transcriptomics and metabolomics provide novel insight into changes in specialized metabolites in an albino tea cultivar (Camellia sinensis (L.) O. Kuntz)[J]. Plant Physiology and Biochemistry, 2021, 160: 27-36. [12] Chang L, Jing L, Li Y L, et al.A spatiotemporal atlas of organogenesis in the development of orchid flower[J]. Nucleic Acids Research, 2022, 50(17): 9724-9737. [13] 李方东. 茶树转录组组装评估与多组学生物信息平台开发[D]. 合肥: 安徽农业大学, 2021. Li D F.Evaluation of tea transcriptome assembly and development of multi-group student information platform [D]. Hefei: Anhui Agricultural University, 2021. [14] 刘芳芳, 刘文祥, 郑伟, 等. 茶树NF-Y基因家族鉴定及非生物胁迫下的表达分析[J]. 江苏农业科学, 2023, 51(5): 81-93. Li F F, Liu W X, Zheng W, et al.Identification of NF-Y gene family in tea tree and expression analysis under abiotic stresses[J]. Jiangsu Agricultural Sciences, 2023, 51(5): 81-93. [15] Shi C Y, Yang H, Wei C L, et al.Deep sequencing of the Camellia sinensis transcriotome revealed candidate genes for major metabolic pathways of tea-specific compounds[J]. BMC Genomics, 2011, 12: 131. doi: 10.1186/1471-2164-12-131. [16] Qiu H J, Zhang X L, Zhang Y J, et al.Depicting the genetic and metabolic panorama of chemical diversity in the tea plant[J]. Plant Biotechnology Journal, 2024, 22(4): 1001-1016. [17] Lei X G, Li H Y, Li P P, et al.Genome-wide association studies of biluochun tea plant populations in Dongting mountain and comprehensive identification of candidate genes associated with core agronomic traits by four analysis models[J]. Plants, 2023, 12(21): 3179. doi: 10.3390/plants12213719. [18] Wang X C, Zhao Q Y, Ma C L, et al.Global transcriptome profiles of Camellia sinensis during cold acclimation[J]. BMC Genomics, 2013, 14: 415. doi: 10.1186/1471-2164-14-415. [19] Qiu H J, Zhu X, Wan H L, et al.Parallel metabolomic and transcriptomic analysis reveals key factors for quality improvement of tea plants[J]. Journal of Agricultural and Food Chemistry, 2020, 68(19): 5483-5495. [20] Giacomello S, Salmén F, Terebieniec B K, et al.Spatially resolved transcriptome profiling in model plant species[J]. Nature Plants, 2017, 3: 17061. doi: 10.1038/nplants.2017.61. [21] Moreno-Villena J J, Zhou H R, Gilman I S, et al. Spatial resolution of an integrated C4+CAM photosynthetic metabolism[J]. Science Advances, 2022, 8(31): 2349. doi: 10.1126/sciadv.abn2349. [22] Song X H, Guo P R, Xia K K, et al.Spatial transcriptomics reveals light-induced chlorenchyma cells involved in promoting shoot regeneration in tomato callus[J]. PNAS, 2023, 120(38): e2310163120. doi: 10.1073/pnas.2310163120. [23] Yang X L, Poelmans W, Grones C, et al.Spatial transcriptomics of a lycophyte root sheds light on root evolution[J]. Current Biology, 2023, 33(19): 4069-4084. [24] 王玮, 刘娜, 徐亚文, 等. 澜沧江中下游流域古茶树资源儿茶素含量的多样性分析[J/OL]. 分子植物育种, 2022: 1-17[2023-09-12]. http://kns.cnki.net/kcms/detail/46.1068.S.20220720.1902.009.html. Wang W, Liu N, Xu Y W, et al. Diversity analysis of catechin content of ancient tea tree resources in the middle and lower reaches of Lancang River [J/OL]. Molecular Plant Breeding, 2022: 1-17[2023-09-12]. http://kns.cnki.net/ kcms/detail/46.1068.S.20220720.1902.009.html. [25] 沈雪梅, 杨丕琼, 许文徽, 等. 十里香茶产业化发展的都市农庄模式[J]. 云南农业, 2014(11): 42-43. Shen X M, Yang P Q, Xu W H, et al.Urban farm model of Industrialization development of Shilixiang tea[J]. Yunnan Agriculture, 2014(11): 42-43. [26] 沈晓进. 昆明十里香古茶树保护与利用的探讨[J]. 西南林学院学报, 2004(2): 27-29. Shen X J.Discussion on protection and utilization of Kunming Shilixiang ancient tea tree[J]. Journal of Southwest Forestry College, 2004(2): 27-29. [27] 沈雪梅, 杨丕琼, 许文徽, 等. 云南十里香茶的保护现状及发展研究[C]//中国科学技术协会, 云南省人民政府. 第十六届中国科协年会——分12茶学青年科学家论坛论文集. 昆明: [出版者不详], 2014: 40-43. Shen X M, Yang P Q, Xu W H, et al.Study on conservation status and development of Shilixiang tea in Yunnan [C]//China Association for Science and Technology, People's Government of Yunnan Province. The 16th Annual Meeting of China Association for Science and Technology: 12 Collection of Essays for the Forum of Young Tea Science Scientists. Kunming: [s.n.], 2014: 40-43. [28] McInnes L, Healy J, Melville J. UMAP: uniform manifold approximation and projection for dimension reduction[J]. ArXiv, 2018: 1802.03426. doi: 10.48550/arXiv.1802.03426. [29] Van der Maaten L. Accelerating t-SNE using tree-based algorithms[J]. Journal of Machine Learning Research, 2014(15): 3221-3245. [30] Muthusamy M, Kim J Y, Yoon E K, et al.BrEXLB1, a Brassica rapa expansin-like B1 gene is associated with root development, drought stress response, and seed germination[J]. Genes, 2020, 11(4): 404. doi: 10.3390/genes11040404. |