[1] Li W X, Shi X G, Guo W X, et al.Characterization of the complete chloroplast genome of Camellia granthamiana (Theaceae), a Vulnerable species endemic to China[J]. Mitochondrial DNA B Resource, 2018, 3(2): 1139-1140. [2] 杨雨青, 谭娟, 汪芳, 等. 茶树叶绿体基因组的研究与应用进展[J]. 生物技术通报, 2024, 40(2): 1-11. Yang Y Q, Tan J, Wang F, et al.Research and application progress in chloroplast genome of tea plant (Camellia sinensis)[J]. Biotechnology Bulletin, 2024, 40(2): 1-11. [3] Xia E H, Tong W, Wu Q, et al.Tea plant genomics: achievements, challenges and perspectives[J]. Horticulture Research, 2020, 7(1): 7. doi: 10.1038/s41438-019-0225-4. [4] 闫明慧, 刘柯, 王满, 等. 信阳10号叶绿体基因组及其系统进化[J]. 茶叶科学, 2021, 41(6): 777-788. Yan M H, Liu K, Wang M, et al.Complete chloroplast genome of Camellia sinensis cv. Xinyang 10 and its phylogenetic evolution[J]. Journal of Tea Science, 2021, 41(6): 777-788. [5] 王士圻. 名茶新魁——上饶白眉[J]. 蚕桑茶叶通讯, 1986(1): 31-32. Wang S Q.Famous tea new leader: Shangrao white eyebrow[J]. Newsletter of Sericulture and Tea, 1986(1): 31-32. [6] 王士圻. 上饶“白眉”炒制技术要点[J]. 茶业通报, 1983(6): 44. Wang S Q.Key points of frying techniques for Shangrao white eyebrows[J]. Journal of Tea Business, 1983(6): 44. [7] 黄奋文, 黄积安. 福丁大毫、上饶大面白不同行距种植对茶叶产量的影响[J]. 蚕桑茶叶通讯, 1988(4): 4-7. Huang F W, Huang J A.The effect of different row spacing planting on tea yield in Fuding Damao and Shangrao Damanbai[J]. Newsletter of Sericulture and Tea, 1988(4): 4-7. [8] 王士圻. 茶树良种——大面白的选育及其鉴定报告[J]. 茶业通报, 1981(5): 40-45. Wang S Q.Breeding and identification report of a good tea tree variety: Damianbai[J]. Journal of Tea Business, 1981(5): 40-45. [9] 王士圻. 茶树良种——上饶大面白[J].蚕桑茶叶通讯, 1978(2): 4-5. Wang S Q.Excellent tea tree variety: Shangrao Damianbai[J]. Newsletter of Sericulture and Tea, 1978(2): 4-5. [10] Cao P H, Wang D, Gao S, et al.OsDXR interacts with OsMORF1 to regulate chloroplast development and the RNA editing of chloroplast genes in rice[J]. Journal of Integrative Agriculture, 2023, 22(3): 669-678. [11] Zhang G L, Feng C, Kou J, et al.Phylogeny and divergence time estimation of the genus Didymodon (Pottiaceae) based on nuclear and chloroplast markers[J]. Journal of Systematics and Evolution, 2023, 61(1): 115-126. [12] Park T.Complete chloroplast genome sequence of Solanum iopetalum, one of the tuber-bearing wild potato relatives[J]. Mitochondrial DNA Part B, 2023, 8: 347-351. [13] Li B Z, Li Y, Li Z F, et al.The complete chloroplast genome of Impatiens mengtszeana (Balsaminaceae), an endemic species in China[J]. Mitochondrial DNA Part B, 2022, 7(2): 367-369. [14] Bourret J, Borvető F, Bravo I G.Subfunctionalisation of paralogous genes and evolution of differential codon usage preferences: the showcase of polypyrimidine tract binding proteins[J]. Journal of Evolutionary Biology, 2023, 36(10): 1375-1392. [15] Tan F, Banerjee A K, Deng J, et al.Characterization of the complete chloroplast genome of Firmiana hainanensis (Malvaceae), an endemic and vulnerable tree species of China[J]. Mitochondrial DNA Part B, 2023, 8(1): 57-60. [16] Singhal S, Kumar U, Alqahtani T, et al.An insight into codon pattern analysis of autophagy genes associated with virus infection[J]. Current Pharmaceutical Design, 2023, 29(14): 1105-1120. [17] Chu D, Wei L.Characterizing the heat response of Arabidopsis thaliana from the perspective of codon usage bias and translational regulation[J]. Journal of Plant Physiology, 2019, 240: 153012. doi: 10.1016/j.jplph.2019.153012. [18] Zhu Y A, Wang S, Xie J, et al.The complete chloroplast genome of Rubus ellipticus var. obcordatus, an edible and medicinal dual-purpose plant[J]. Mitochondrial DNA Part B, 2022, 7(2): 406-408. [19] 赵许朋, 崔奎, 耿苗苗, 等. 贵定鸟王茶的叶绿体基因组特征[J]. 西南农业学报, 2023, 36(11): 2348-2357. Zhao X P, Cui K, Geng M M, et al.Chloroplast genome characteristics of Guiding Niaowang tea[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(11): 2348-2357. [20] 佟岩, 黄荟, 王雨华. 森林茶园古茶树大理茶叶绿体基因组密码子偏好性及系统发育研究[J]. 茶叶科学, 2023, 43(3): 297-309. Tong Y, Huang H, Wang Y H.Analysis of codon usage bias and phylogenesis in the chloroplast genome of ancient tea tree Camellia taliensis in forest-tea garden[J]. Journal of Tea Science, 2023, 43(3): 297-309. [21] 黎巷汝, 赵雅琦, 张艳, 等. 武夷名丛叶绿体基因组序列特征及系统发育分析[J]. 南方农业学报, 2023, 54(5): 1352-1362. Li X R, Zhao Y Q, Zhang Y, et al.Chloroplast genome sequence features and phylogenetic analysis of Wuyi Mingcong[J]. Journal of Southern Agriculture, 2023, 54(5): 1352-1362. [22] 刘振, 赵洋, 杨培迪, 等. 三倍体茶树‘西莲1号’叶绿体基因组特征及系统发育分析[J]. 茶叶通讯, 2023, 50(2): 166-175. Liu Z, Zhao Y, Yang P D, et al.Characterization and phylogenetic analysis of the complete chloroplast genome of triploid tea plant Xilian 1[J]. Journal of Tea Communicatio, 2023, 50(2): 166-175. [23] 叶晓倩, 赵忠辉, 朱全武, 等. 茶树‘龙井43’叶绿体基因组测序及其系统进化[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 404-412. Ye X Q, Zhao Z H, Zhu Q W, et al.Entire chloroplast genome sequence of tea (Camellia sinensis cv.Longjing 43): a molecular phylogenetic analysis[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2014, 40(4): 404-412. [24] Li L, Hu Y F, Wu L, et al.The complete chloroplast genome sequence of Camellia sinensis cv. Dahongpao: a most famous variety of Wuyi tea (Synonym: Thea bohea L.)[J]. Mitochondrial DNA Part B, 2021, 6(1): 3-5. [25] Peng J, Zhao Y L, Dong M, et al.Exploring the evolutionary characteristics between cultivated tea and its wild relatives using complete chloroplast genomes[J]. BMC Ecology and Evolution, 2021, 21(1): 71. doi: 10.1186/s12862-021-01800-1. [26] Doyle J J.A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochem Bull, 1987, 19(1): 11-15. [27] Dierckxsens N, Mardulyn P, Smits G.NOVOPlasty: de novo assembly of organelle genomes from whole genome data[J]. Nucleic Acids Research, 2016, 45(4): e18. doi: 10.1093/nar/gkw955. [28] Chen S F, Zhou Y Q, Chen Y R, et al.Fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890. [29] Tillich M, Lehwark P, Pellizzer T, et al.GeSeq: versatile and accurate annotation of organelle genomes[J]. Nucleic Acids Research, 2017, 45(W1): W6-W11. [30] Lowe T M, Eddy S R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic Acids Research, 1997, 25(5): 955-964. [31] Lohse M, Drechsel O, Bock R.OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes[J]. Current Genetics, 2007, 52(5/6): 267-274. [32] Grant J R, Stothard P.The CGView Server: a comparative genomics tool for circular genomes[J]. Nucleic Acids Research, 2008, 36: 181-184. [33] Thiel T, Michalek W, Varshney R, et al.Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.)[J]. Theoretical & Applied Genetics, 2003, 106(3): 411-422. [34] Kurtz S, Choudhuri J V, Ohlebusch E, et al.REPuter: the manifold applications of repeat analysis on a genomic scale[J]. Nucleic Acids Research, 2001, 29(22): 4633-4642. [35] Sharp P M, Li W H.Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’ codons[J]. Nucleic Acids Research, 1986, 14(19): 7737-7749. [36] Domselaar G V.Interactive microbial genome visualization with GView[J]. Bioinformatics, 2010, 26(24): 3125-3126. [37] Amiryousefi A, Hyvönen J, Poczai P.IRscope: an online program to visualize the junction sites of chloroplast genomes[J]. Bioinformatics, 2018, 34(17): 3030-3031. [38] Rozas J, Rozas R.DnaSP, DNA sequence polymorphism: an interactive program for estimating population genetics parameters from DNA sequence data[J]. Bioinformatics, 1995, 11(6): 621-625. [39] Katoh K, Standley D M.MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Molecular Biology and Evolution. 2013, 30(4): 772-780. [40] Price M N, Dehal P S, Arkin A P.FastTree 2-approximately maximum-likelihood trees for large alignments[J]. Plos One, 2010, 5(3): e9490. doi: 10.1371/journal.pone.0009490. [41] Zhang C, Li S Q, Xie H H, et al.Comparative plastid genome analyses of Rosa: Insights into the phylogeny and gene divergence[J]. Tree Genetics & Genomes, 2022, 18(3): 20. doi: 10.1007/s11295-022-01549-8. [42] 纵丹, 黄嘉城, 段晓盟, 等. 无籽刺梨及其近缘种叶绿体基因组序列比较分析[J]. 福建农林大学学报(自然科学版), 2024, 53(1): 39-47. Zong D, Huang J C, Duan X M, et al.Comparative analyses on chloroplast genome sequence of Rosa sterilis and its related species[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2024, 53(1): 39-47. [43] Kaila T, Chaduvla P K, Saxena S, et al.Chloroplast genome sequence of pigeonpea (Cajanus cajan (L.) Millspaugh) and Cajanus scarabaeoides (L.) Thouars: genome organization and comparison with other legumes[J]. Frontiers in Plant Science, 2016, 7: 1847. doi: 10.3389/fpls.2016.01847. [44] Park I, Yang S, Kim W J, et al.The Complete chloroplast genomes of six Ipomoea species and indel marker development for the discrimination of authentic pharbitidis semen (seeds of I. nil or I. purpurea)[J]. Frontiers in Plant Science, 2018, 9: 965. doi: 10.3389/fpls.2018.00965. [45] Yang Y, Dang Y Y, Li Q, et al.Complete chloroplast genome sequence of poisonous and medicinal plant Datura stramonium: organizations and implications for genetic engineering[J]. Plos One, 2014, 9(11): e110656. doi: 10.1371/journal.pone.0110656. eCollection 2014. [46] Fan L, Li L, Hu Y F, et al.Complete chloroplast genomes of five classical Wuyi tea varieties (Camellia sinensis, Synonym: Thea bohea L.), the most famous oolong tea in China[J]. Mitochondrial DNA Part B, 2022, 7(4): 655-657. [47] Li X W, Gao H H, Wang Y T, et al.Complete chloroplast genome sequence of Magnolia grandiflora and comparative analysis with related species[J]. Science China Life Sciences, 2013, 56(2): 189-198. [48] Huang H, Shi C, Liu Y, et al.Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships[J]. BMC Evolutionary Biology, 2014, 14(1): 151. doi: 10.1186/1471-2148-14-151. [49] Geng X S, Huang N, Zhu Y L, et al.Codon usage bias analysis of the chloroplast genome of cassava[J]. South African Journal of Botany, 2022, 151: 970-975. [50] Ramesh G A, Mathew D, John K J, et al.Chloroplast gene matK holds the barcodes for identification of Momordica (Cucurbitaceae) species from Indian subcontinent[J]. Horticultural Plant Journal, 2022, 8(1): 89-98. [51] Yang C J, Wang K, Zhang H, et al.Analysis of the chloroplast genome and phylogenetic evolution of three species of Syringa[J]. Molecular Biology Reports, 2023, 50(1): 665-677. [52] Rawal H C, Kumar P M, Bera B, et al.Decoding and analysis of organelle genomes of Indian tea (Camellia assamica) for phylogenetic confirmation[J]. Genomics, 2020, 112(1): 659-668. |