[1] Du M J, Li X X, Cai D S, et al.In-silico study of reducing human health risk of POP residues’ direct (from tea) or indirect exposure (from tea garden soil): improved rhizosphere microbial degradation, toxicity control, and mechanism analysis[J]. Ecotoxicology and Environmental Safety, 2022, 242: 113910. doi: 10.1016/j.ecoenv.2022.113910. [2] 张洪, 张孟婷, 王福楷, 等. 4种间作作物对夏秋季茶园主要叶部病害发生的影响[J]. 茶叶科学, 2019, 39(3): 318-324. Zhang H, Zhang M T, Wang F K, et al.Effect of four intercrops on the occurrence of major foliar diseases in summer and fall tea plantations[J]. Journal of Tea Science, 2019, 39(3): 318-324. [3] 边磊, 何旭栋, 季慧华, 等. 基于机器视觉的小贯小绿叶蝉智能识别的研究与应用[J]. 茶叶科学, 2022, 42(3): 376-386. Bian L, He X D, Ji H H, et al.Research and application of intelligent identification of Empoasca onukii based on machine vision[J]. Journal of Tea Science, 2022, 42(3): 376-386. [4] Yang N, Yuan M F, Wang P, et al.Tea diseases detection based on fast infrared thermal image processing technology[J]. Journal of the Science of Food and Agriculture, 2019, 99: 3459-3466. [5] 杨奉水, 王志博, 汪为通, 等. 人工智能识别茶树病虫害的应用与展望[J]. 中国茶叶, 2022, 44(6): 1-6. Yang F S, Wang Z B, Wang W T, et al.Application and prospect of artificial intelligence identification of tea Pests and diseases[J]. China Tea, 2022, 44(6): 1-6. [6] Liu Q, Zhang Y, Yang G.Small unopened cotton boll counting by detection with MRF-YOLO in the wild[J]. Computers and Electronics in Agriculture, 2023, 204: 107576. doi: 10.1016/j.compag.2022.107576. [7] Nath M, Mitra P, Kumar D.A novel residual learning-based deep learning model integrated with attention mechanism and SVM for identifying tea plant diseases[J]. International Journal of Computers and Applications, 2023, 45: 471-484. [8] Sun Y Y, Jiang Z H, Zhang L P, et al.SLIC_SVM based leaf diseases saliency map extraction of tea plant[J]. Computers and Electronics in Agriculture, 2019, 157: 102-109. [9] 林彬彬, 邱新法, 何永健, 等. 茶树病害智能诊断识别算法研究[J]. 江苏农业科学, 2019, 47(6): 85-91. Lin B B, Qiu X F, He Y J, et al.Research on Intelligent diagnosis and recognition algorithm of tea tree diseases[J]. Jiangsu Agricultural Sciences, 2019, 47(6): 85-91. [10] Yin C H, Zeng T W, Zhang H M, et al.Maize small leaf spot classification based on improved deep convolutional neural networks with a multi-scale[J]. Agronomy, 2022, 12: 906. doi: 10.3390/agronomy12040906. [11] 孙道宗, 刘欢, 刘锦源, 等. 基于改进YOLOv4模型的茶叶病害识别[J]. 西北农林科技大学学报(自然科学版), 2023, 51(9): 145-154. Sun D Z, Liu H, Liu J Y, et al.Tea Disease Recognition Based on Improved YOLOv4 Modeling[J]. Journal of Northwest A&F University (Nature Science Edition), 2023, 51(9):145-154. [12] Xue Z Y, Xu R J, Bai D, et al.YOLO-Tea : a tea disease detection model improved by YOLOv5[J]. Forests, 2023, 14: 415. doi: 10.3390/f14020415. [13] 叶荣, 马自飞, 高泉, 等. 基于改进YOLOv5s-ECA-ASFF算法的茶叶病害目标检测[J]. 中国农机化学报, 2024, 45(1): 244-251. Ye R, Ma Z F, Gao Q, et al.Tea disease target detection based on improved YOLOv5s-ECA-ASFF algorithm[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 244-251. [14] Bao W X, Zhu Z Q, Hu G S, et al.UAV remote sensing detection of tea leaf blight based on DDMA-YOLO[J]. Computers and Electronics in Agriculture, 2023, 205: 107636. doi: 10.1016/j.compag.2023.107637. [15] Soeb J A, Jubayer F, Tarin T A, et al.Tea leaf disease detection and identification based on YOLOv7 (YOLO-T)[J]. Scientific Reports, 2023, 13(1): 6078. doi: 10.1038/s41598-023-33270-4. [16] Chen J Y, Liu H, Zhang Y T, et al.A multiscale lightweight and efficient model based on YOLOv7 : applied to citrus orchard[J]. Plants, 2022, 11: 3260. doi: 10.3390/plants11233260. [17] Redmon J, Divvala S, Girshick R, et al.You only look once: unified, real-time object detection[C]//IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788. [18] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//The Institute of Electrical and Electronics Engineers. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 7464-7475. [19] Liu R, Lehman J, Molino P, et al.An intriguing failing of convolutional neural networks and the CoordConv solution[J]. Advances in Neural Information Processing Systems, 2018, 31: 1-12. [20] Zhang H T, Tian M, Shao G P, et al.Target detection of forward-looking sonar image based on improved YOLOv5[J]. IEEE Access, 2022, 10: 18023-18034. [21] IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020: 11534-11542. [22] Ni H J, Shi Z W, Karungaru S, et al.Classification of typical pests and diseases of rice based on the ECA attention mechanism[J]. Agriculture, 2023, 13: 1066. doi: 10.3390/agriculture13051066. [23] Xu C, Wang J W, Yang W, et al.Detecting tiny objects in aerial images: a normalized Wasserstein distance and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 79-93. doi: 10.1016/j.isprsjprs.2022.06.002. [24] Wang J W, Xu C, Yang W, et al.A normalized gaussian Wasserstein distance for tiny object detection[J]. arXiv preprint arXiv:2110.13389, 2021: 1-12. doi: 10.48550/arXiv.2110.13389. [25] Song G L, Liu Y, Wang X G.Revisiting the sibling head in object detector[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020: 11563-11572. [26] Wu Y, Chen Y P, Yuan L, et al.Rethinking classification and localization for object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020: 10186-10195. [27] Meng C X, Wang Z N, Shi L, et al.SDRC-YOLO : a novel foreign object intrusion detection algorithm in railway scenarios[J]. Electronics, 2023, 12: 1256. doi: 10.3390/electronics12051256. [28] Li G B, Shi G L, Jiao J.YOLOv5-KCB : a new method for individual pig detection using optimized K-means, CA attention mechanism and a Bi-directional feature pyramid network[J]. Sensors, 2023, 23: 5242. doi: 10.3390/s23115242. [29] Xue J L, Cheng F, Li Y Q, et al.Detection of farmland obstacles based on an improved YOLOv5s algorithm by using CIoU and anchor box scale clustering[J]. Sensors, 2022, 22: 1790. doi: 10.3390/s22051790. |