[1] Gramza-Michalowska A.Caffeine in tea camellia sinensis: content, absorption, benefits and risks of consumption[J]. The Journal of Nutrition, Health& Aging, 2014, 18(2): 143-149. [2] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003. Wan X C.Tea biochemistry [M]. 3rd ed. Beijing: China Agriculture Press, 2003. [3] Mohanpuria P, Kumar V, Yadav S K.Tea caffeine: metabolism, functions, and reduction strategies[J]. Food Science and Biotechnology, 2010, 19(2): 275-287. [4] Ashihara H, Suzuki T.Distribution and biosynthesis of caffeine in plants[J]. Frontiers in Bioscience, 2004, 9: 1864-1876. [5] Ashihara H, Sano H, Crozier A.Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering[J]. Phytochemistry, 2008, 69: 841-856. [6] 吴华玲, 陈栋, 李家贤. 茶树咖啡碱代谢及低咖啡碱茶树育种研究进展[J]. 热带作物学报, 2011, 32(9): 1780-1785. Wu H L, Chen D, Li J X.Research progress in caffeine metabolism and low caffeine content germplasm breeding of tea plants (Camellia sinensis (L.) O. Kuntze)[J]. Chinese Journal of Tropical Crops, 2011, 32(9): 1780-1785. [7] 晏嫦妤, 任秋婧, 陈小芳, 等. 咖啡碱合成N-甲基转移酶研究进展[J]. 茶叶科学, 2014, 34(6): 531-540. Yan C Y, Ren Q J, Chen X F, et al.Research progress of N-methyltransferases involved in caffeine biosynthesis[J]. Journal of Tea Science, 2014, 34(6): 531-540. [8] 刘玉飞, 金基强, 姚明哲, 等. 茶树咖啡碱合成酶基因稀有等位变异TCS1g的筛选、克隆及功能[J]. 中国农业科学, 2019, 52(10): 1772-1783. Liu Y F, Jin J Q, Yao M Z, et al.Screening, cloning and functional research of the rare allelic variation of caffeine synthase gene (TCS1g) in tea plant[J]. Scientia Agricultura Sinica, 2019, 52(10): 1772-1783. [9] Zhou M, Yan C, Zeng Z, et al.N-methyltransferases of caffeine biosynthetic pathway in plants[J]. Journal of Agricultural and Food Chemistry, 2020, 68: 15359-15372. [10] Wang Y, Liu Y F, Wei M Y, et al. Deeply functional identification of TCS1 alleles provides efficient technical paths for low-caffeine breeding of tea plants [J]. Horticulture Research, 2023, 10(2): uhac279. doi: 10.1093/hr/uhac279. [11] Wang Q, Wu Y, Peng A, et al.Single-cell transcriptome atlas reveals developmental trajectories and a novel metabolic pathway of catechin esters in tea leaves[J]. Plant Biotechnology Journal, 2022, 20: 2089-2106. [12] 关智晶, 孙超. 植物次生代谢的区室化研究进展[J]. 生物技术通报, 2024, 40(1): 1-11. Guan Z J, Sun C.Research progress in the compartmentalization of plant specialized metabolism[J]. Biotechnology Bulletin, 2024, 40(1): 1-11. [13] Ashihara H, Yokota T, Crozier A.Biosynthesis and catabolism of purine alkaloids[J]. Advances in Botanical Research, 2013, 68: 111-138. [14] 韦康, 王丽鸳, 王新超, 等. 黄茶“中黄2号”的亚细胞结构透射电镜观察[J]. 食品与生物技术学报, 2017, 36(12): 1246-1250. Wei K, Wang L Y, Wang X C, et al.Transmission electron microscopic study of subcellular structure of yellow tea cultivar ‘Zhonghuang 2’[J]. Journal of Food Science and Biotechnology, 2017, 36(12): 1246-1250. [15] 张晨禹, 王铭涵, 高羲之, 等. 茶树‘湘妃翠’黄化枝光合生理与组织学[J]. 分子植物育种, 2019, 17(23): 7892-7900. Zhang C Y, Wang M H, Gao X Z, et al.Photosynthetic physiological and histology in novel etiolated branch of the ‘Xiangfeicui’ tea plant (Camellia sinensis)[J]. Molecular Plant Breeding, 2019, 17(23): 7892-7900. [16] 王丽鸳, 赵容波, 成浩, 等. 叶色特异茶树品种选育现状[J]. 中国茶叶, 2020, 42(1): 15-19. Wang L Y, Zhao R B, Cheng H, et al.Current situation on breeding of tea cultivars with special leaf colors[J]. China Tea, 2020, 42(1): 15-19 [17] Zhang Y Z, Wei K, Guo L L, et al.Functional identification of purine permeases reveals their roles in caffeine transport in tea plants(Camellia sinensis)[J]. Frontiers in Plant Science, 2022(13): 1033316. doi:10.3389/fpls.2022.1033316. [18] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the method[J]. Methods, 2001, 25(4): 402-408. [19] Kato A, Crozier A, Ashihara H.Subcellular localization of the N-3 methyltransferase involved in caffeine biosynthesis in tea[J]. Phytochemistry, 1998, 48(5): 777-779. [20] Breda S V, Merwe C F, Robbertse H.Immunohistochemical localization of caffeine in young Camellia sinensis (L.) O. Kuntze (tea) leaves[J]. Planta, 2013, 237: 849-858. [21] 李娜娜. 新梢白化茶树生理生化特征及白化分子机理研究[D]. 杭州: 浙江大学, 2015. Li N N.Physiological, biochemical characteristics and molecular albinism of the albino tea (Camellia sinensis) plant [D]. Hangzhou: Zhejiang University, 2015. [22] Chen X, Li J, Yu Y, et al.STAY-GREEN and light-harvesting complex II chlorophyll a/b binding protein are involved in albinism of a novel albino tea germplasm ‘Huabai 1’[J]. Scientia Horticultuare, 2022, 293: 110653. doi: 10.1016/j.scienta.2021.110653. [23] 田月月. 黄金芽茶树叶色响应光质的生理特性及机制研究[D]. 泰安: 山东农业大学, 2020. Tian Y Y.Mechanism of physiological characteristics of leaf color in Camellia sinensis cv. Huangjinya response to light quality [D]. Tai′an: Shandong Agricultural University, 2020. [24] 林馨颖, 王鹏杰, 杨如兴, 等. 高茶氨酸茶树新品系‘福黄1号’黄化变异机理[J]. 中国农业科学, 2022, 55(9): 1831-1845. Lin X Y, Wang P J, Yang R X, et al.The albino mechanism of a new high theanine tea cultivar Fuhuang 1[J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845. [25] Li Q, Huang J A, Liu S Q, et al.Proteomic analysis of young leaves at three developmental stages in an albino tea cultivar[J]. Proteome Science, 2011, 9(31): 1-12. doi: 10.1186/1477-5956-9-44 [26] 娄艳华, 何卫中, 刘瑜, 等. 14个黄化、白化变异茶树品种(系)综合性状评价与分析[J]. 茶叶, 2020, 46(2): 84-90. Lou Y H, He W Z, Liu Y, et al.Comprehensive assessment of quality traits of 14 etiolated and albino tea cultivars[J]. Journal of Tea, 2020, 46(2): 84-90. [27] Mohanpuria P, Kumar V, Joshi R, et al.Caffeine biosynthesis and degradation in tea [Camellia sinensis (L.) O. Kuntze] is under developmental and seasonal regulation[J]. Molecular Biotechnology, 2009, 43: 104-111. [28] 李金, 魏艳丽, 庞磊, 等. 茶树咖啡碱合成途径中TCS1、TIDH、SAMS的基因表达量差异及其与咖啡碱含量的相关性[J]. 江苏农业科学, 2013, 41(10): 21-24. Li J, Wei Y L, Pang L, et al.Different gene expression levels of TCS1, TIDH, and SAMS in caffeine synthesis pathway and their correlation with caffeine content in tea plants[J]. Jiangsu Agricultural Sciences, 2013, 41(10): 21-24. [29] 李远华, 江昌俊, 宛晓春. 茶树咖啡碱合成酶基因mRNA表达的研究[J]. 茶叶科学, 2004, 24(1): 23-28. Li Y H, Jiang C J, Wan X C.Study on the expression of caffeine synthase gene mRNA in tea plant[J]. Journal of Tea Science, 2004, 24(1): 23-28. [30] Li Y, Gu W, Ye S.Expression and location of caffeine synthase in tea plants[J]. Russian Journal of Plant Physiology, 2007, 54(5): 698-701. [31] Zhong H, Wang Y, Qu F R, et al. A novel TcS allele conferring the high-theacrine and low-caffeine traits and having potential use in tea plant breeding [J]. Horticulture Research, 2022, 9: uhac191. doi: 10.1093/hr/uhac191. [32] Teng J, Yan C Y, Zeng W, et al.Purification and characterization of Theobromine Synthase in a Theobromine-Enriched Wild Tea Plant(Camellia gymnogyna Chang) from Dayao Mountain, China[J]. Food Chemistry, 2020(311): 125875. doi: 10.1016/j.foodchem.2019.125875. [33] Ogawa M, Herai Y, Koizumi N, et al.7-Methylxanthine methyltransferase of coffee plants[J]. The Journal of Biological Chemistry, 2001, 276: 8213-8218. [34] Kodama Y, Shinya T, Sano H.Dimerization of N-methyltransferases involved in caffeine biosynthesis[J]. Biochimie, 2008, 90(3): 547-551. |