茶叶科学 ›› 2024, Vol. 44 ›› Issue (5): 707-717.doi: 10.13305/j.cnki.jts.2024.05.001
• 综述 • 下一篇
徐晴晴1,3, 聂晴1,3, 刘助生2,*, 郭青1,3, 刘仲华1,3, 蔡淑娴1,3,*
收稿日期:
2024-06-19
修回日期:
2024-07-22
出版日期:
2024-10-15
发布日期:
2024-11-08
通讯作者:
*glxlg0397@163.com;caishuxian@hunau.edu.cn
作者简介:
徐晴晴,女,本科,主要从事茶叶资源高值化利用方面的研究。
基金资助:
XU Qingqing1,3, NIE Qing1,3, LIU Zhusheng2,*, GUO Qing1,3, LIU Zhonghua1,3, CAI Shuxian1,3,*
Received:
2024-06-19
Revised:
2024-07-22
Online:
2024-10-15
Published:
2024-11-08
摘要: 废弃茶叶资源和夏秋茶用于生产康普茶和细菌纤维素,不仅有助于减少环境污染和资源浪费,还能开发高市场价值的产品。细菌纤维素作为一种高晶度、可再生的多糖,广泛应用于生物医疗、环保包装、纺织、新能源电池、护肤品等领域。综述了近年来细菌纤维素膜的应用研究,重点分析了不同发酵环境和茶叶种类对细菌纤维素膜品质的影响,证实了通过调整发酵参数可获得具有特定结晶结构的纤维素。进一步探讨了茶叶成分在菌膜形成中的作用,并提出了提高康普茶细菌纤维素膜产量和质量的新思路。文章强调了康普茶细菌纤维素膜的保健功效及其在可持续产品开发中的重要作用,并指出了进一步研究以促进其工业化应用的必要性。
中图分类号:
徐晴晴, 聂晴, 刘助生, 郭青, 刘仲华, 蔡淑娴. 康普茶细菌纤维素的形成途径及其在废弃茶叶资源高效利用中的应用[J]. 茶叶科学, 2024, 44(5): 707-717. doi: 10.13305/j.cnki.jts.2024.05.001.
XU Qingqing, NIE Qing, LIU Zhusheng, GUO Qing, LIU Zhonghua, CAI Shuxian. Review on the Formation Pathway of Kombucha Bacterial Cellulose and Its Application in Efficient Utilization of Tea Waste[J]. Journal of Tea Science, 2024, 44(5): 707-717. doi: 10.13305/j.cnki.jts.2024.05.001.
[1] Liu Y, Li X, Shi L, et al. Analysis of polysaccharide structure involves separating homologous polysaccharides, drawing elution curve, measuring purity and molecular weight of polysaccharide in segmented homologous polysaccharide group, determining structure, glycosidic bonds and functional groups of each polysaccharide: CN117990732-A [P].2024-05-07[2024-06-19]. [2] 张妍. 红茶菌发酵产细菌纤维素工艺及其性能研究[D]. 哈尔滨: 哈尔滨商业大学, 2013. Zhang Y.Study on the process and characterization of bacterial cellulose producted by Kombucha [D]. Harbin: Harbin University of Commerce, 2013. [3] Görgüç A, Gençdag E, Yilmaz F M.Bioactive peptides derived from plant origin by-products: biological activities and techno-functional utilizations in food developments: a review[J]. Food Research International, 2020, 136: 109504. doi: 10.1016/j.foodres.2020.109504. [4] Wang B Y, Rutherfurd-Markwick K, Zhang X X, et al.Kombucha: production and microbiological research[J]. Foods, 2022, 11(21): 3456. doi: 10.3390/foods11213456. [5] 蒋立文. 红茶菌优势微生物的分离、鉴定及抗菌机理的研究[D]. 长沙: 湖南农业大学, 2007. Jiang L W.Studies on isolation and identification of predominant microbes from Kombucha and their anti-microbes mechanism [D]. Changsha: Hunan Agricultural University, 2007. [6] Behera B, Laavanya D, Balasubramanian P.Techno-economic feasibility assessment of bacterial cellulose biofilm production during the Kombucha fermentation process[J]. Bioresource Technology, 2022, 346: 126659. doi: 10.1016/j.biortech.2021.126659. [7] Devanthi P V P, Kho K, Nurdiansyah R, et al. Do Kombucha symbiotic cultures of bacteria and yeast affect bacterial cellulose yield in molasses?[J]. Journal of Fungi, 2021, 7(9): 705.doi: 10.3390/jof7090705. [8] Esa F, Tasirin S M, Rahman N A.Overview of bacterial cellulose production and application[J]. Agriculture and Agricultural Science Procedia, 2014, 2: 113-119. [9] Dufresne C, Farnworth E. Tea, Kombucha,health: a review[J]. Food Research International, 2000, 33(6) : 409-421. [10] 吴薇, 盖宝川, 籍保平. 红茶菌菌种主要代谢产物的试验研究[J]. 食品科学, 2004, 25(12): 147-151. Wu W, Gai B C, Ji B P.D-glucaric acid and other metabolites in Kombucha[J]. Food Science, 2004, 25(12): 147-151. [11] Villarreal-Soto S A, Beaufort S, Bouajila J, et al. Understanding Kombucha tea fermentation: a review[J]. Journal of Food Science, 2018, 83(3): 580-588. [12] 唐水佳, 杨雪霞, 洪枫. 红茶菌制备细菌纤维素的研究[J]. 纤维素科学与技术, 2012, 20(2): 40-45. Tang S J, Yang X X, Hong F.Production of bacterial cellulose by Kombucha[J]. Journal of Cellulose Science and Technology, 2012, 20(2): 40-45. [13] Savary O, Mounier J, Thierry A, et al.Tailor-made microbial consortium for Kombucha fermentation: microbiota-induced biochemical changes and biofilm formation[J]. Food Research International, 2021, 147: 110549. doi: 10.1016/j.foodres.2021.110549. [14] Laavanya D, Shirkole S, Balasubramanian P.Current challenges, applications and future perspectives of SCOBY cellulose of Kombucha fermentation[J]. Journal of Cleaner Production, 2021, 295: 126454. doi: 10.1016/j.jclepro.2021.126454. [15] 余瞻, 赵福权, 徐成龙, 等. 红茶菌中细菌纤维素产生菌的筛选、鉴定及其发酵动力学模型构建[J]. 食品与发酵工业, 2021, 47(6): 92-98. Yu Z, Zhao F Q, Xu C L, et al.Screening, identification of bacterial cellulose producing bacteria and establishment of fermentation kinetics[J]. Food and Fermentation Industries, 2021, 47(6): 92-98. [16] Chakravorty S, Bhattacharya S, Chatzinotas A, et al.Kombucha tea fermentation: microbial and biochemical dynamics[J]. International Journal of Food Microbiology, 2016, 220: 63-72. [17] 吕橄, 赵文韬, 龚建萍, 等. 细菌纤维素在食品工业中的应用研究进展[J]. 现代食品, 2021(16): 23-28. Lü K, Zhao W T, Gong J P, et al.Research progress on the application of bacterial cellulose in food industry[J]. Modern Food, 2021(16): 23-28. [18] Semjonovs P, Ruklisha M, Paegle L, et al.Cellulose synthesis by [19] Emiljanowicz K E, Malinowska-Panczyk E.Kombucha from alternative raw materials: the review[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(19): 3185-3194. [20] AlKalifawi I, Hassan A A. Factors influence on the yield of bacterial cellulose of Kombucha (Khubdat Humza)[J]. Baghdad Science Journal, 2014, 11(3): 1420-1428. [21] Balasubramanian P, Praharaj P T.Principal component analysis revealed the key influencing factors of kombucha bacterial cellulose yield and productivity[J]. Bioresource Technology Reports, 2023, 23: 101539. doi: 10.1016/j.biteb.2023.101539. [22] Neera, Ramana K V, Batra H V. Occurrence of Cellulose-Producing [23] Yim S M, Song J E, Kim H R.Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar[J]. Process Biochemistry, 2017, 59: 26-36. [24] Sharma C, Bhardwaj N K.Biotransformation of fermented black tea into bacterial nanocellulose via symbiotic interplay of microorganisms[J]. International Journal of Biological Macromolecules, 2019, 132: 166-177. [25] Ramirez Tapias Y A, Di Monte M V, Peltzer M A, et al. Bacterial cellulose films production by Kombucha symbiotic community cultured on different herbal infusions[J]. Food Chemistry, 2022, 372: 131346. doi:10.1016/j.foodchem.2021.131346. [26] Mahmoud F, Haines D, Al-Ozairi E, et al.Effect of black tea consumption on intracellular cytokines, regulatory T cells and metabolic biomarkers in type 2 diabetes patients[J]. Phytotherapy Research, 2016, 30(3): 454-462. [27] Gargey I A, Indira D, Jayabalan R, et al.Optimization of etherification reactions for recycling of tea fungal biomass waste into Carboxymethylcellulose[M]//Drück H, Pillai R G, Tharian M G, et al. Green buildings and sustainable engineering. Singapore: Springer Singapore, 2019. [28] Zhou D D, Saimaiti A, Luo M, et al.Fermentation with tea residues enhances antioxidant activities and polyphenol contents in Kombucha beverages[J]. Antioxidants, 2022, 11(1): 115.doi: 10.3390/antiox11010155. [29] 李昊燃. 红茶菌中细菌纤维素产生菌的筛选鉴定及发酵条件优化[D]. 开封: 河南大学, 2016. Li H R.Screening and identification of a strain producing bacterial cellolose from Kombucha and purification of fermentation process [D]. Kaifeng: Henan University, 2016. [30] 蒋立文, 刘德华, 廖卢燕, 等. 红茶菌发酵过程中主要化学成分变化的研究[J]. 食品科学, 2007, 28(3): 238-240. Jiang L W, Liu D H, Liao L Y, et al.Study on changes in major components during tea fungus fermentation[J]. Food Science, 2007, 28(3): 238-240. [31] Tang H R, Covington A D, Hancock R A.Structure-activity relationships in the hydrophobic interactions of polyphenols with cellulose and collagen[J]. Biopolymers, 2003, 70(3): 403-413. [32] Phan A D T, Netzel G, Wang D, et al. Binding of dietary polyphenols to cellulose: structural and nutritional aspects[J]. Food Chemistry, 2015, 171: 388-396. [33] Tran T, Grandvalet C, Winckler P, et al.Shedding light on the formation and structure of Kombucha biofilm using two-photon fluorescence microscopy[J]. Frontiers in Microbiology, 2021, 12: 725379. doi: 10.3389/fmicb.2021.725379. [34] 张慧霞. 红茶菌微生物的分离及其代谢的初步研究[D]. 福州: 福建师范大学, 2019. Zhang H X.Isolation and metabolism of Kombucha microorganisms [D]. Fuzhou: Fujian Normal University, 2019. [35] Balentine D A, Wiseman S A, Bouwens L C M. The chemistry of tea flavonoids[J]. Critical Reviews in Food Science and Nutrition, 1997, 37(8): 693-704. [36] Tran T, Verdier F, Martin A, et al.Oxygen management during kombucha production: roles of the matrix, microbial activity, and process parameters[J]. Food Microbiology, 2022, 105: 104024. doi: 10.1016/j.fm.2022.104024. [37] Fontana J D, Franco V C, Desouza S J, et al.Nature of plant stimulators in the production of [38] Serra D O, Mika F, Richter A M, et al.The green tea polyphenol EGCG inhibits [39] Zhao T, Chen Z Z, Lin X R, et al.Preparation and characterization of microcrystalline cellulose (MCC) from tea waste[J]. Carbohydrate Polymers, 2018, 184: 164-170. [40] 王奕, 杨娟, 杨海滨, 等. 基于实地与网络调查的夏秋茶产业发展现状及建议[J]. 南方农业, 2023, 17(13): 194-199. Wang Y, Yang J, Yang H B, et al.Development status and suggestions of summer and autumn tea industry based on offline and online surveys[J]. South China Agriculture, 2023, 17(13): 194-199. [41] Zheng Q M, Han C Y, Zhong Y M, et al.Effects of dietary supplementation with green tea waste on growth, digestive enzyme and lipid metabolism of juvenile hybrid tilapia, [42] Sudheer B A, Ramakrishna C, Raju S, et al.Evaluation of tea waste or tea residue, orange peels and pigeon pea pods for proximate composition, fodder quality and digestibility parameters[J]. The Pharma Innovation Journal, 2022, 11(11): 1441-1445. [43] Balcı-Torun F, Özdemir K S, Mavuş R, et al.Determination of cream formation conditions and its composition during production of concentrated tea extract from black tea manufacturing wastes[J]. The Journal of Food, 2021, 46(2): 339-350. [44] Ho K K H Y, Haufe T C, Ferruzzi M G, et al. Production and polyphenolic composition of tea[J]. Nutrition Today, 2018, 53(6): 268-278. [45] Hamed D A, Maghrawy H H, Abdel Kareem H.Biosynthesis of bacterial cellulose nanofibrils in black tea media by a symbiotic culture of bacteria and yeast isolated from commercial kombucha beverage[J]. World Journal of Microbiology and Biotechnology, 2022, 39(2): 48. doi: 10.1007/s11274-022-03485-0. [46] Hussain Z, Sajjad W, Khan T, et al.Production of bacterial cellulose from industrial wastes: a review[J]. Cellulose, 2019, 26(5): 2895-2911. [47] Hegde S, Bhadri G, Narsapur K, et al.Statistical optimization of medium components by response surface methodology for enhanced production of bacterial cellulose by [48] Padmanabhan S K, Lamanna L, Friuli M, et al.Carboxymethylcellulose-based hydrogel obtained from bacterial cellulose[J]. Molecules, 2023, 28(2): 829. doi: 10.3390/molecules28020829. [49] Amarasekara A S, Wang D, Grady T L.A comparison of kombucha SCOBY bacterial cellulose purification methods[J]. Discover Applied Sciences, 2020, 2: 240. doi: 10.1007/s42452-020-1982-2. [50] Dima S O, Panaitescu D M, Orban C, et al.Bacterial nanocellulose from side-streams of Kombucha beverages production: preparation and physical-chemical properties[J]. Polymers, 2017, 9(8): 374. doi: 10.3390/polym9080374. [51] Knöller A, Widenmeyer M, Bill J, et al.Fast-growing bacterial cellulose with outstanding mechanical properties via cross-linking by multivalent ions[J]. Materials, 2020, 13(12): 2838. doi: 10.3390/ma13122838. [52] Tapias Y A R, Peltzer M A, Delgado J F, et al. Kombucha tea byproduct as source of novel materials: formulation and characterization of films[J]. Food and Bioprocess Technology, 2020, 13: 1166-1180. [53] Kamiński K, Jarosz M, Grudzień J, et al.Hydrogel bacterial cellulose: a path to improved materials for new eco-friendly textiles[J]. Cellulose, 2020, 27: 5353-5365. [54] Zhou X Y, Liu X L, Wang Q, et al.Antimicrobial and antioxidant films formed by bacterial cellulose, chitosan and tea polyphenol: shelf life extension of grass carp[J]. Food Packaging and Shelf Life, 2022, 33: 100866. doi: 10.1016/j.fpsl.2022.100866. [55] Betlej I, Salerno-Kochan R, Krajewski K, et al.The influence of culture medium components on the physical and mechanical properties of cellulose synthesized by Kombucha microorganisms[J]. Bioresources, 2020, 15(2): 3125-3135. [56] Oliver-Ortega H, Geng S, Espinach F X, et al.Bacterial cellulose network from Kombucha fermentation impregnated with emulsion-polymerized poly (methyl methacrylate) to form nanocomposite[J]. 2021, 13(4): 664. doi: 10.3390/polym13040664. [57] Agüero A, Lascano D, Ivorra-Martinez J, et al.Use of bacterial cellulose obtained from kombucha fermentation in spent coffee grounds for active composites based on PLA and maleinized linseed oil[J]. Industrial Crops and Products, 2023, 202: 116971. doi: 10.1016/j.indcrop.2023.116971. [58] Zhang X X, Xu J, Zhang Z J, et al.Pb(II) adsorption properties of a three-dimensional porous bacterial cellulose/graphene oxide composite hydrogel subjected to ultrasonic treatment[J]. Materials, 2024, 17(13): 3053. doi: 10.3390/ma17133053. [59] Julia M M R, Rubí E R Q, Juan P H R, et al. Production and characterization of biocomposite films of bacterial cellulose from Kombucha and coated with chitosan[J]. Polymers, 2022, 14(17): 3632. doi: 10.3390/polym14173632. [60] Priyadharshini T, Nageshwari K, Vimaladhasan S, et al.Machine learning prediction of SCOBY cellulose yield from Kombucha tea fermentation[J]. Bioresource Technology Reports, 2022, 18: 101027. doi: 10.1016/j.biteb.2022.101027. [61] 张秀伶, 王稳航. 纳米纤维素研究及在食品工业中的应用前景[J]. 食品工业科技, 2016, 37(21): 377-382. Zhang X L, Wang W H.Study on nano-cellulose and its application prospect in food industry[J]. Science and Technology of Food Industry, 2016, 37(21): 377-382. [62] 张艳, 张丽薇, 张金叶, 等. 红茶菌类产品的研究进展[J]. 现代食品, 2017(20): 44-46. Zhang Y, Zhang L W, Zhang J Y, et al.The research progress of Kombucha's products[J]. Modern Food, 2017(20): 44-46. [63] Okiyama A, Yamanaka S, Takehisa F.Effect of bacterial cellulose on fecal excretion and transit time in rats[J]. Journal of Japanese Society of Nutrition and Food Science, 1993, 46(2): 155-159. [64] Hagiwara A, Imai N, Sano M, et al.A 28-day oral toxicity study of fermentation-derived cellulose, produced by [65] Xu C, Ma X, Chen S W, et al.Bacterial cellulose membranes used as artificial substitutes for dural defection in rabbits[J]. 2014, 15(6): 10855-10867. [66] Chau C F, Yang P, Yu C M, et al.Investigation on the lipid- and cholesterol-lowering abilities of biocellulose[J]. Journal of Agricultural and Food Chemistry, 2008, 56(6): 2291-2295. [67] Lin D H, Liu Z, Shen R, et al.Bacterial cellulose in food industry: current research and future prospects[J]. International Journal of Biological Macromolecules, 2020, 158: 1007-1019. [68] Garcia-Diez F, Garcia-Mediavilla V, Bayon J E, et al.Pectin feeding influences fecal bile acid excretion, hepatic bile acid and cholesterol synthesis and serum cholesterol in rats[J]. Journal of Nutrition, 1996, 126: 1766-1771. [69] Lairon D.Dietary fibres and dietary lipids[M]//McCleary B V, Prosky L. Advanced dietary fibre technology. Malden City: Blackwell Science Ltd., 2001. [70] Zhai X C, Lin D H, Zhao Y, et al.Effects of dietary fiber supplementation on fatty acid metabolism and intestinal microbiota diversity in C57BL/6J mice fed with a high-fat diet[J]. Journal of Agricultural and Food Chemistry, 2018, 66(48): 12706-12718. [71] Zhai X C, Lin D H, Zhao Y, et al.Bacterial cellulose relieves diphenoxylate-induced constipation in rats[J]. Journal of Agricultural and Food Chemistry, 2018, 66(16): 4106-4117. [72] Zhang L L, Zhang W, Peng F B, et al.Effects of bacterial cellulose on glucose metabolism in an in vitro chyme model and its rheological evaluation[J]. International Journal of Food Science & Technology, 2021, 56(11): 6100-6112. [73] Mikkelsen D, Gidley M J, Williams B A. [74] Avcioglu N H B M, Bilkay I S. Optimization and physicochemical characterization of enhanced microbial cellulose production with a new Kombucha consortium[J]. Process Biochemistry, 2021, 108: 61-67. [75] 朱昌来, 李峰, 尤庆生, 等. 纳米细菌纤维素的制备及其超微结构镜观察[J]. 生物医学工程研究, 2008, 27(4): 287-290. Zhu C L, Li F, You Q S, et al.Preparation of nanometer biomaterial bacterial cellulose and observation of its ultra-structure[J]. Journal of Biomedical Engineering Research, 2008, 27(4): 287-290. [76] 胡晨, 唐义权. 细菌纤维素在眼科等医学领域的研究与展望[J]. 合成材料老化与应用, 2021, 50(5): 178-180. Hu C, Tang Y Q.Research and prospect of bacterial cellulose in the field of ophthalmology[J]. Synthetic Materials Aging and Application, 2021, 50(5): 178-180. [77] Czaja W, Krystynowicz A, Bielecki S, et al.Microbial cellulose: the natural power to heal wounds[J]. Biomaterials, 2006, 27(2): 145-151. [78] Aduri P, Rao K A, Fatima A, et al.Study of biodegradable packaging material produced from scoby[J]. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 2019, 5(3): 389. doi: 10.26479/2019.0503.32. [79] Khorasani A C, Shojaosadati S A.Bacterial nanocellulose-pectin bionanocomposites as prebiotics against drying and gastrointestinal condition[J]. International Journal of Biological Macromolecules, 2016, 83: 9-18. [80] 蒋高鹏. 基于细菌纤维素的质子交换膜的制备、表征及其在燃料电池中的应用研究[D]. 上海: 东华大学, 2012. Jiang G P.Preparation, characterization of proton exchange membranes based on bacterial cellulose and their application in fuel cells [D]. Shanghai: Donghua Univversity, 2012. [81] 刘玉智, 李景超, 陈立宗, 等. 细菌纤维素在造纸行业中的研究与应用进展[J]. 山东化工, 2019, 48(22) : 55, 57. Liu Y Z, Li J C, Chen L Z, et al. Research and application progress of bacterial cellulose in the field of papermaking [J]. Shandong Chemical Industry, 2019, 48(22): 55, 57. [82] Aung T, Kim M J.A comprehensive review on kombucha biofilms: a promising candidate for sustainable food product development[J]. Trends in Food Science & Technology, 2024, 144: 104325.doi: 10.1016/j.tifs.2024.104325. |
[1] | 晏朵, 余鹏辉, 龚雨顺. 萎凋过程中环境胁迫对茶叶品质影响研究进展[J]. 茶叶科学, 2025, 45(1): 1-14. |
[2] | 董圆, 张永恒, 肖烨子, 余有本. 茶树BZR1基因家族的鉴定及CsBZR1-5响应干旱胁迫的分子机理研究[J]. 茶叶科学, 2025, 45(1): 15-28. |
[3] | 朱倩, 邵陈禹, 周彪, 刘硕谦, 刘仲华, 田娜. 茶树ICE基因家族鉴定及CsICE43克隆和低温表达分析[J]. 茶叶科学, 2025, 45(1): 43-60. |
[4] | 尹明华, 张牧彤, 徐子林, 欧阳茜, 王美暄, 李文婷. 茶树‘大面白’线粒体基因组结构特征及其密码子偏好性分析[J]. 茶叶科学, 2025, 45(1): 61-78. |
[5] | 唐美君, 李红, 张欣欣, 姜洪新, 王志博, 郭华伟, 肖强. 温度对灰茶尺蠖幼虫龄期数量的影响[J]. 茶叶科学, 2025, 45(1): 79-86. |
[6] | 陈俊华, 闻鑫茹, 王晨旭, 张俏俏, 刘红敏, 宁万光, 郭世保. 叉角厉蝽对茶银尺蠖幼虫的捕食作用及捕食偏好性[J]. 茶叶科学, 2025, 45(1): 87-98. |
[7] | 李再霖, 彭锋, 王兴民, 陈晓胜. 潮州单丛茶区不同海拔瓢虫科昆虫群落结构与多样性[J]. 茶叶科学, 2025, 45(1): 99-109. |
[8] | 马雪晴, 吴华伟, 曹春霞, 郑娇莉. 茶园根际解磷菌的筛选及其对茶叶产量、品质及土壤性质的影响[J]. 茶叶科学, 2025, 45(1): 110-120. |
[9] | 林东艺, 黄冲, 王未名, 黄艳, 冯新凯. 茶渣基摩擦纳米发电机的性能优化及风力监测系统应用研究[J]. 茶叶科学, 2025, 45(1): 121-132. |
[10] | 马梦君, 胡新龙, 邱首哲, 张锐明, 唐慧珊, 刘晨, 余子铭, 李婧, 王明乐. 基于代谢组学的不同年份青砖茶主要品质成分分析[J]. 茶叶科学, 2025, 45(1): 133-144. |
[11] | 罗璐璐, 赵悦汐, 王彦博, 幸怡, 齐洋, 马宏炜, 程林峰, 张芳琳. 表没食子儿茶素没食子酸酯抗汉滩病毒效果研究[J]. 茶叶科学, 2025, 45(1): 145-156. |
[12] | 徐金屏, 杜雪梅, 吕婉仪, 朱雷, 张丹阳, 陈红平, 陈玲, 柴云峰. 绿茶中7种不同极性农药在茶汤中的浸出规律及其风险评估[J]. 茶叶科学, 2025, 45(1): 157-168. |
[13] | 杨浩, 唐佳暖, 杜舒琪, 张豆, 胡广. 基于社交媒体数据的西湖龙井茶园生态系统文化服务评价[J]. 茶叶科学, 2025, 45(1): 169-180. |
[14] | 徐文鸾, 温晓菊, 贾雨轩, 倪德江, 王明乐, 陈玉琼. 茶树果胶甲酯酶及其抑制子家族基因的鉴定及CsPME55参与氟胁迫响应的功能分析[J]. 茶叶科学, 2024, 44(6): 869-886. |
[15] | 杨楠, 李转, 刘玫辰, 马骏杰, 石云桃, 魏湘凝, 林阳顺, 毛宇源, 高水练. 钾营养对茶树EGCG生物合成的调控作用研究[J]. 茶叶科学, 2024, 44(6): 887-900. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|