[1] Zhang S Y, Liu J J, Zhong G X, et al.Genome-wide identification and expression patterns of the C2H2-Zinc finger gene family related to stress responses and catechins accumulation in Camellia sinensis (L.) O. Kuntze[J]. International Journal of Molecular Sciences, 2021, 22(8): 4197-4214. [2] Dai F J, Rong Z Y, Wu Q S, et al.Mycorrhiza improves plant growth and photosynthetic characteristics of tea plants in response to drought stress[J]. Biocell, 2022, 46(5): 1339-1346. [3] Shen J Z, Wang S S, Sun L T, et al.Dynamic changes in metabolic and lipidomic profiles of tea plants during drought stress and re-watering[J]. Frontiers in Plant Science, 2022, 13: 978531. doi: 10.3389/fpls.2022.978531. [4] 黄文镜, 杨树华, 葛红, 等. AMF对观赏植物生长发育影响的研究进展[J]. 中国农学通报, 2023, 39(7): 55-63. Huang W J, Yang S H, Ge H, et al.Research of AMF on the growth and development of ornamental plants[J]. Chinese Agricultural Science Bulletin, 2023, 39(7): 55-63. [5] Bagheri V, Shamshiri M H, Alaei H, et al.The role of inoculum identity for growth, photosynthesis, and chlorophyll fluorescence of zinnia[J]. Bhotosynthetica, 2019, 57(2): 409-419. [6] Ye Q H, Wang H, Li H.Arbuscular mycorrhizal fungi enhance drought stress tolerance by regulating osmotic balance[J]. Australian Journal of Grape and Wine Research, 2023, 2023: 1-13. [7] Abdurrahim Y, Ertan Y, Hilal Y, et al.Use of arbuscular mycorrhizal fungi for boosting antioxidant enzyme metabolism and mitigating saline stress in sweet basil (Ocimum basilicum L.)[J]. Sustainability, 2023, 15(7): 5982-5996. [8] Bahadur A L I, Batool A S F A, Nasir F A H A D, et al. Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants[J]. International Journal of Molecular Sciences, 2019, 20(17): 4199-4217. [9] Liang S M, Li Q S, Liu M Y, et al.Mycorrhizal effects on growth and expressions of stress-responsive genes (aquaporins and SOSs) of tomato under salt stress[J]. Journal of Fungi, 2022, 8(12): 1305-1315. [10] Yan Q X, Li X Y, Xiao X F, et al.Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Cinnamomum migao by enhancing physio-biochemical responses[J]. Ecology and Evolution, 2022, 12(7): e9091. doi: 10.1002/ece3.9091. [11] Singh S, Pandey A, Chaurasia B, et al.Diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of tea growing in ‘natural' and ‘cultivated' ecosites[J]. Biology and Fertility of Soils, 2008, 44: 491-500. [12] 卢东升, 吴小芹. 豫南茶园VA菌根真菌种类研究[J]. 南京林业大学学报(自然科学版), 2005, 29(3): 33-36. Lu D S, Wu X Q.Species of VAM fungi around tea roots in the southern area of Henan province[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2005, 29(3): 33-36. [13] 王玉娟, 高秀兵, 吴强盛, 等. 不同水分条件下AM真菌对福鼎大白茶生长和茶叶品质的影响[J]. 茶叶科学, 2020, 40(5): 588-596. Wang Y J, Gao X B, Wu Q S, et al.Influences of arbuscular mycorrhizal fungi on plant growth and tea quality of Fuding Dabaicha seedlings under different water conditions[J]. Journal of Tea Science, 2020, 40(5): 588-596. [14] 许平辉, 王飞权, 齐玉岗, 等. 丛枝菌根真菌对茶树抗旱性的影响[J]. 西北农业学报,2017, 26(7): 1033-1040. Xu P H, Wang F Q, Qi Y G, et al.Effect of arbuscular mycorrhiza fungi on drought resistance in tea plant (Camellia sinensis)[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2017, 26(7): 1033-1040. [15] 王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京: 高等教育出版社, 2006. Wang X K.Experimental principles and techniques of plant physiology and biochemistry [M]. 2nd ed. Beijing: Higher Education Press, 2006. [16] Phillips J M, Hayman D S.Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society, 1970, 55: 158-161. [17] Bethlenfalvay G J, Ames R N.Comparison of two methods for quantifying extraradical mycelium of vesicular-arbuscular mycorrhizal fungi[J]. Soil Science Society of America Journal, 1987, 51: 834-837. [18] Bajji M, Lutts S, Kinet J M.Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions[J]. Plant Science, 2001, 160(4): 669-681. [19] 孙琪璐. 复水方式对干旱胁迫下茶树的影响及CsSnRK2基因家族的克隆与表达[D]. 合肥: 安徽农业大学, 2019. Sun Q L.Effect of rehydration method on tea plant under drought stress and cloning and expression of CsSnRK2 gene family [D]. Hefei: Anhui Agricultural University, 2019. [20] 杨妮, 万绮雯, 李逸民, 等. 外源亚精胺对盐胁迫下茶树光合特性及关键酶基因表达的影响[J]. 园艺学报, 2022, 49(2): 378-394. Yang N, Wan Q W, Li Y M, et al.Effects of exogenous spermidine on photosynthetic characteristics and gene expression of key enzymes under salt stress in tea plant[J]. Acta Horticulturae Sinica, 2022, 49(2): 378-394. [21] Liu C Y, Hao Y, Wu X L, et al.Arbuscular mycorrhizal fungi improve drought tolerance of tea plants via modulating root architecture and hormones[J]. Plant Growth Regulation, 2024, 102(1): 13-22. [22] Zou Y N, Zhang F, Srivastava A K, et al.Arbuscular mycorrhizal fungi regulate polyamine homeostasis in roots of trifoliate orange for improved adaptation to soil moisture deficit stress[J]. Frontiers Plant Science, 2021, 11: 600792. doi: 10.3389/fpls.2020.600792. [23] Liu C Y, Wang Y J, Wu Q S, et al.Arbuscular mycorrhizal fungi improve the antioxidant capacity of tea (Camellia sinensis) seedlings under drought stress[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2020, 48(4): 1993-2005. [24] Ortas I, Rafique M, Çekiç F Ö.Do mycorrhizal fungi enable plants to cope with abiotic stresses by overcoming the detrimental effects of salinity and improving drought tolerance?[J]. Symbiotic Soil Microorganisms: Biology and Applications, 2021: 391-428. [25] 李雪. 丛枝菌根真菌对干旱胁迫下柑橘幼苗生长及抗旱性的影响[D]. 重庆: 西南大学, 2022. Li X.Effects of arbuscular mycorrhizal fungi on growth and drought resistance of citrus seedlings under water stress [D]. Chongqing: Southwest University, 2022. [26] 蒲子天, 张林, 张弛, 等. 丛枝菌根真菌与植物共生影响植物水分状态的研究进展[J]. 土壤, 2022, 54(5): 882-889. Pu Z T, Zhang L, Zhang C, et al.Research progress of arbuscular mycorrhizal fungi and plant symbiosis affecting plant water regime[J]. Soils, 2022, 54(5): 882-889. [27] Guo X N, Hao Y, Wu X L, et al.Exogenous easily extractable glomalin-related soil protein stimulates plant growth by regulating tonoplast intrinsic protein expression in lemon[J]. Plants, 2023, 12(16): 2955-2967. [28] Liu C Y, Guo X N, Dai F J, et al.Mycorrhizal symbiosis enhances P uptake and indole-3-acetic acid accumulation to improve root morphology in different citrus genotypes[J]. Horticulture, 2024, 10(4): 339-415. [29] Liu C Y, Zhang F, Zhang D J, et al.Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress[J]. Scientific Reports, 2018, 8(1): 1978-1987. [30] 王浩, 孙丽英. 植物激素调控丛枝菌根发育的作用机制研究进展[J]. 微生物学通报, 2022, 49(10): 4448-4466. Wang H, Sun L Y.Mechanisms of phytohormones in regulating arbuscular mycorrhiza development[J]. Microbiology China, 2022, 49(10): 4448-4466. [31] 方必君, 卓定龙, 刘晓洲, 等. 干旱胁迫及复水对野牡丹光合和叶绿素荧光参数的影响[J]. 热带农业科学, 2023, 43(2): 44-49. Fang B J, Zhuo D L, Liu X Z, et al.Effects of drought stress and rehydration on photosynthetic and chlorophyll fluorescence parameters of Melastoma candidum D. Don[J]. Chinese Journal of Tropical Agriculture, 2023, 43(2): 44-49. [32] 马坤, 王彦淇, 杨建军, 等. 不同干旱胁迫条件下丛枝菌根真菌对木棉叶绿素荧光参数的影响[J]. 植物资源与环境学报, 2017, 26(3): 35-43. Ma K, Wang Y Q, Yang J J, et al.Effect of arbuscular mycorrhizal fungi on chlorophyll fluorescence parameters of Bombax ceiba under different drought stress conditions[J]. Journal of Plant Resources and Environment, 2017, 26(3): 35-43. [33] 吴学蕤, 赵庆霞, 蔡银美, 等. 干旱-复水对构树叶片水势和气孔开闭的影响[J]. 草地学报, 2023, 31(3): 769-776. Wu X R, Zhao Q X, Cai Y M, et al.Effects of drought-rewatering on leaf water potential and stomatal opening and closing of Broussonetia papyrifera[J]. Acta Agrestia Sinica, 2023, 31(3): 769-776. [34] 刘婷, 唐明. 丛枝菌根真菌对杨树生长、气孔和木质部微观结构的影响[J]. 植物生态学报, 2014, 38(9): 1001-1007. Liu T, Tang M.Effects of arbuscular mycorrhizal fungi on growth and anatomical properties of stomata and xylem in poplars[J]. Chinese Journal of Plant Ecology, 2014, 38(9): 1001-1007. [35] 杨海莉. 小花碱茅对渗透胁迫与等渗透势盐胁迫的生理响应[D]. 兰州: 兰州大学, 2019. Yang H L.Physiological response of Puccinellia tenuiflora to osmotic and isotonic salt stress [D]. Lanzhou: Lanzhou University, 2019. [36] 李津津, 赵书岗, 安秀红, 等. 干旱胁迫下核桃生理适应性及抗性指标筛选[J]. 中国果树, 2023, 84(3): 72-78. Li J J, Zhao S G, An X H, et al.Physiological adaptation of walnut under drought stress and screening of its resistance indexes[J]. China Fruits, 2023, 84(3): 72-78. [37] 张菲, 邹英宁, 吴强盛. AM真菌摩西管柄囊霉对干旱胁迫下枳抗氧化酶基因表达的影响[J]. 菌物学报, 2019, 38(11): 2043-2050. Zhang F, Zou Y N, Wu Q S.Effects of Funneliformis mosseae on the expression of antioxidant enzyme genes in trifoliate orange exposed to drought stress[J]. Mycosystema, 2019, 38(11): 2043-2050. |