[1] Walling L L.The myriad plant responses to herbivores[J]. Journal of Plant Growth Regulation, 2000, 19(2): 195-216. [2] 谢辉, 王燕, 刘银泉, 等. 植物组成型防御对植食性昆虫的影响[J]. 植物保护, 2012, 38(1): 1-5. Xie H, Wang Y, Liu Y Q, et al.The influence of plant constitutive defense system on phytophagous insects[J]. Plant Protection, 2012, 38(1): 1-5. [3] Agrawal A A.Induced responses to herbivory and increased plant performance[J]. Science, 1998, 279(5354): 1201-1202. [4] Akula R, Mukherjee S.New insights on neurotransmitters signaling mechanisms in plants[J]. Plant Signaling & Behavior, 2020, 15(6): 1737450. doi: 10.1080/15592324.2020.1737450. [5] Kessler A, Baldwin I T.Plant responses to insect herbivory: the emerging molecular analysis[J]. Annual Review of Plant Biology, 2002, 53: 299-328. [6] Köllner T G, Lenk C, Schnee C, et al.Localization of sesquiterpene formation and emission in maize leaves after herbivore damage[J]. BMC Plant Biology, 2013, 13(1): 15.doi: 10.1186/1471-2229-13-15. [7] Malook S U, Qi J F, Hettenhausen C, et al.The oriental armyworm (Mythimna separata) feeding induces systemic defence responses within and between maize leaves[J]. Philosophical Transactions of the Royal Society B, 2019, 374(1767): 20180307. doi: 10.1098/rstb.2018.0307. [8] Li L, Dou N, Zhang H, et al.The versatile GABA in plants[J]. Plant Signaling & Behavior, 2021, 16(3): 1862565.doi:10.1080/15592324.2020.1862565. [9] Macgregor K B, Shelp B J, Peiris S, et al.Overexpression of glutamate decarboxylase in transgenic tobacco plants deters feeding by phytophagous insect larvae[J]. Journal of Chemical Ecology, 2003, 29(9): 2177-2182. [10] Scholz S S, Malabarba J, Reichelt M, et al.Evidence for GABA-induced systemic GABA accumulation in Arabidopsis upon wounding[J]. Frontiers in Plant Science, 2017, 8: 388. doi: 10.3389/fpls.2017.00388. [11] Bown A W, Hall D E, MacGregor K B. Insect footsteps on leaves stimulate the accumulation of 4-aminobutyrate and can be visualized through increased chlorophyll fluorescence and superoxide production[J]. Plant Physiology, 2002, 129(4): 1430-1434. [12] Bown A W, MacGregor K B, Shelp B J. Gamma-aminobutyrate: defense against invertebrate pests?[J]. Trends in Plant Science, 2006, 11(9): 424-427. [13] Scholz S S, Reichelt M, Mekonnen D W, et al.Insect herbivory-elicited gaba accumulation in plants is a wound-induced, direct, systemic, and jasmonate-independent defense response[J]. Frontiers in Plant Science, 2015, 6: 1128. doi: 10.3389/fpls.2015.01128. [14] Zhou H L, Chen H Y, Bao D P, et al.Recent advances of γ-aminobutyric acid: physiological and immunity function, enrichment, and metabolic pathway[J]. Frontiers in Nutrition, 2022, 9: 1076223. doi: 10.3389/fnut.2022.1076223. [15] 周俊萍, 徐玉娟, 温靖, 等. γ-氨基丁酸(GABA)的研究进展[J]. 食品工业科技, 2024, 45(5): 393-401. Zhou J P, Xu Y J, Wen J, et al.Research progress of γ-aminobutyric acid (GABA)[J]. Science and Technology of Food Industry, 2024, 45(5): 393-401. [16] 程永祥. 1969—2019年临安茶尺蠖发生特点调查与分析[J]. 中国茶叶, 2020, 42(4): 55-56, 59. Cheng Y X.Investigation and analysis on the occurrence characteristics of tea geometrid in Lin'an from 1969 to 2019[J]. China Tea, 2020, 42(4): 55-56, 59. [17] Liu G H, Wang Q, Chen H, et al.Plant-derived monoterpene S-linalool and β-ocimene generated by CsLIS and CsOCS-SCZ are key chemical cues for attracting parasitoid wasps for suppressing Ectropis obliqua infestation in Camellia sinensis L[J]. Plant, Cell & Environment, 2024, 47(3): 913-927. [18] Liao Y Y, Tan H B, Jian G T, et al.Herbivore-induced (Z)-3-Hexen-1-ol is an airborne signal that promotes direct and indirect defenses in tea (Camellia sinensis) under light[J]. Journal of Agricultural and Food Chemistry, 2021, 69(43): 12608-12620. [19] Liu G H, Yang M, Fu J Y.Identification and characterization of two sesquiterpene synthase genes involved in volatile-mediated defense in tea plant (Camellia sinensis)[J]. Plant Physiology and Biochemistry, 2020, 155: 650-657. [20] Ye M, Liu M M, Erb M, et al.Indole primes defence signalling and increases herbivore resistance in tea plants[J]. Plant, Cell & Environment, 2021, 44(4): 1165-1177. [21] Qian J J, Liao Y Y, Jian G T, et al.Light induces an increasing release of benzyl nitrile against diurnal herbivore Ectropis grisescens Warren attack in tea (Camellia sinensis) plants[J]. Plant, Cell & Environment, 2023, 46(11): 3464-3480. [22] Jing T T, Qian X N, Du W K, et al.Herbivore-induced volatiles influence moth preference by increasing the β-ocimene emission of neighbouring tea plants[J]. Plant, Cell & Environment, 2021, 44(11): 3667-3680. [23] Chen Y F, Wang Z Y, Gao T, et al.Deep learning and targeted metabolomics-based monitoring of chewing insects in tea plants and screening defense compounds[J]. Plant, Cell & Environment, 2023, 47: 698-713. [24] Wang W W, Zheng C, Hao W J, et al.Transcriptome and metabolome analysis reveal candidate genes and biochemicals involved in tea geometrid defense in Camellia sinensis[J]. Plos One, 2018, 13(8): e0201670. doi: 10.1371/journal.pone.0201670. [25] Jing T T, Du W K, Qian X N, et al.UGT89AC1-mediated quercetin glucosylation is induced upon herbivore damage and enhances Camellia sinensis resistance to insect feeding[J]. Plant, Cell & Environment, 2024, 47(2): 682-697. [26] Li X W, Zhang J, Lin S B, et al.(+)-Catechin, epicatechin and epigallocatechin gallate are important inducible defensive compounds against Ectropis grisescens in tea plants[J]. Plant, Cell & Environment, 2021, 45: 496-511. [27] Zhu J Y, He Y X, Yan X M, et al.Duplication and transcriptional divergence of three Kunitz protease inhibitor genes that modulate insect and pathogen defenses in tea plant (Camellia sinensis)[J]. Horticulture Research, 2019, 6(1): 126. doi:10.1038/s41438-019-0208-5. [28] Yang Z W, Duan X N, Jin S, et al.Regurgitant derived from the tea geometrid Ectropis obliqua suppresses wound-induced polyphenol oxidases activity in tea plants[J]. Journal of Chemical Ecology, 2013, 39(6): 744-751. [29] Gao J J, Zhou M X, Chen D, et al.High-throughput screening and investigation of the inhibitory mechanism of α-glucosidase inhibitors in teas using an affinity selection-mass spectrometry method[J]. Food Chemistry, 2023, 422: 136179. doi: 10.1016/j.foodchem.2023.136179. [30] Dai W D, Hu Z Y, Xie D C, et al.A novel spatial-resolution targeted metabolomics method in a single leaf of the tea plant (Camellia sinensis)[J]. Food Chemistry, 2020, 311: 126007. doi:10.1016/j.foodchem.2019.126007. [31] 孙美莲, 王云生, 杨冬青, 等. 茶树实时荧光定量PCR分析中内参基因的选择[J]. 植物学报, 2010, 45(5): 579-587. Sun M L, Wang Y S, Yang D Q, et al.Selection of reference genes in real time fluorescence quantitative PCR analysis of tea plants[J]. Chinese Bulletin of Botany, 2010, 45(5): 579-587. [32] Bown A W, Shelp B J.Plant GABA: not just a metabolite[J]. Trends in Plant Science, 2016, 21(10): 811-813. [33] Zhang J, Yu Y C, Qian X N, et al.Recent advances in the specialized metabolites mediating resistance to insect pests and pathogens in tea plants (Camellia sinensis)[J]. Plants, 2024, 13(2): 323. doi: 10.3390/plants13020323. [34] Lin S B, Ye M, Li X W, et al. A novel inhibitor of the jasmonic acid signaling pathway represses herbivore resistance in tea plants [J]. Horticulture Research, 2022, 9: uhab038. doi: 10.1093/hr/uhab038. [35] 冉伟, 张瑾, 张新, 等. 茶尺蠖幼虫取食提高茶树儿茶素代谢响应强度[J]. 茶叶科学, 2018, 38(2): 133-139. Ran W, Zhang J, Zhang X, et al.Infestation of Ectropis obliqua affects the catechin metabolism in tea plants[J]. Journal of Tea Science, 2018, 38(2): 133-139. [36] Zhang X, Ran W, Li X W, et al.Exogenous application of gallic acid induces the direct defense of tea plant against Ectropis obliqua caterpillars[J]. Frontiers in Plant Science, 2022, 13: 833489. doi: 10.3389/fpls.2022.833489. [37] Huang T F, Jander G, Vos M D.Non-protein amino acids in plant defense against insect herbivores: representative cases and opportunities for further functional analysis[J]. Phytochemistry, 2011, 72(13): 1531-1537. [38] Mithöfer A, Boland W.Plant defense against herbivores: chemical aspects[J]. Annual Review of Plant Biology, 2012, 63: 431-450. [39] Seifikalhor M, Aliniaeifard S, Hassani B, et al.Diverse role of γ-aminobutyric acid in dynamic plant cell responses[J]. Plant Cell Reports, 2019, 38(8): 847-867. [40] Tarkowski Ł P, Signorelli S, Höfte M.γ-Aminobutyric acid and related amino acids in plant immune responses: emerging mechanisms of action[J]. Plant, Cell & Environment, 2020, 43(5): 1103-1116. [41] 筱禾. 作用于GABA受体杀虫剂的代谢、作用机制及开发研究[J]. 世界农药, 2019, 41(2): 18-28. Xiao H.Study on metabolism, mechanism of action and development of insecticides acting on GABA receptors[J]. World Pesticide, 2019, 41(2): 18-28. [42] Irving S N, Osborne M P, Wilson R G.Studies on L-glutamate in insect haemolymph[J]. Physiological Entomology, 1979, 4(2): 139-146. [43] Hosie A M, Aronstein K, Sattelle D B, et al.Molecular biology of insect neuronal GABA receptors[J]. Trends in Neurosciences, 1997, 20(12): 578-583. [44] Kiep V, Vadassery J, Lattke J, et al.Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis[J]. The New Phytologist, 2015, 207(4): 996-1004. [45] 余光辉, 涂奕霏, 李承龙, 等. 植物GABA信号途径研究[J]. 中南民族大学学报(自然科学版), 2021, 40(5): 472-477. Yu G H, Tu Y F, Li C L, et al.GABA signaling pathway research in plant kingdoms[J]. Journal of South-central Minzu University (Natural Science Edition), 2021, 40(5): 472-477. |