[1] Varshney K.An analysis of health benefits of green tea[J]. Asian Journal of Research in Social Sciences and Humanities, 2021, 11(11): 895-900. [2] Alam M, Ali S, Ashraf G M, et al.Epigallocatechin 3-gallate: from green tea to cancer therapeutics[J]. Food Chemistry, 2022, 379:132135. doi: 10.1016/j.foodchem.2022.132135. [3] Dong C W, Yang C S, Liu Z Y, et al.Nondestructive testing and visualization of catechin content in black tea fermentation using hyperspectral imaging[J]. Sensors, 2021, 21(23): 8051. doi: 10.3390/s21238051. [4] 陈宗懋. 茶与健康研究的前景与挑战[J]. 中国茶叶, 2019, 41(9): 11-14. Chen Z M.Prospects and challenges of tea and health research[J]. China Tea, 2019, 41(9): 11-14. [5] Silva R F M, Pogačnik L. Polyphenols from food and natural products: neuroprotection and safety[J]. Antioxidants, 2020, 9(1): 61. doi: 10.3390/antiox9010061 [6] 刘亚军, 王培强, 蒋晓岚, 等. 茶树单体和聚合态儿茶素生物合成的研究进展[J]. 茶叶科学, 2022, 42(1): 1-17. Liu Y J, Wang P Q, Jiang X L, et al.Research progress on the biosynthesis of monomeric and polymeric catechins in Camellia sinensis[J]. Journal of Tea Science, 2022, 42(1): 1-17. [7] 夏涛, 高丽萍, 刘亚军, 等. 茶树酯型儿茶素生物合成及水解途径研究进展[J]. 中国农业科学, 2013, 46(11): 2307-2320. Xia T, Gao L P, Liu Y J, et al.Advances in research of biosynthesis and hydrolysis pathways of gallated catechins in Camellia sinensis[J]. Scientia Agricultura Sinica, 2013, 46(11): 2307-2320. [8] 胡晓婧, 许玉娇, 高丽萍, 等. 茶树黄烷酮3-羟化酶基因(F3H)的克隆及功能分析[J]. 农业生物技术学报, 2014, 22(3): 309-316. Hu X J, Xu Y J, Gao L P, et al.Cloning and functional analysis of flavanone 3- hydroxylase gene (F3H) in tea (Camellia sinensis)[J]. Journal of Agricultural Biotechnology, 2014, 22(3): 309-316. [9] 陆建良, 林晨, 骆颖颖, 等. 茶树重要功能基因克隆研究进展[J]. 茶叶科学, 2007, 27(2): 95-103. Lu J L, Lin C, Luo Y Y, et al.Progress in functional gene cloning of Camellia sinensis[J]. Journal of Tea Science, 2007, 27(2): 95-103. [10] Zhao S, Cheng H, Xu P, et al.Regulation of biosynthesis of the main flavor-contributing metabolites in tea plant (Camellia sinensis): a review[J]. Critical Reviews in Food Science and Nutrition, 2023, 63(30): 10520-10535. [11] Zhao L Q, Shan C M, Shan T Y, et al.Comparative transcriptomic analysis reveals the regulatory mechanisms of catechins synthesis in different cultivars of Camellia sinensis[J]. Food Research International, 2022, 157: 111375. doi: 10.1016/j.foodres.2022.111375. [12] Ahmad M Z, Li P, She G, et al.Genome-wide analysis of serine carboxypeptidase-like acyltransferase gene family for evolution and characterization of enzymes involved in the biosynthesis of galloylated catechins in the tea plant (Camellia sinensis)[J]. Frontiers in Plant Science, 2020, 11: 848. doi: 10.3389/fpls.2020.00848. [13] Wei K L, Liu M Y, Shi Y P, et al.Metabolomics reveal that the high application of phosphorus and potassium in tea plantation inhibited amino-acid accumulation but promoted metabolism of flavonoid[J]. Agronomy, 2022, 12(5): 1086. doi: 10.3390/agronomy12051086. [14] Zhou Z J, Chen K, Yu H, et al.Changes in tea performance and soil properties after three years of polyhalite application[J]. Agronomy Journal, 2019, 111(4): 1967-1976. [15] Ruan J Y, Ma L F, Shi Y P.Potassium management in tea plantations: its uptake by field plants, status in soils, and efficacy on yields and quality of teas in China[J]. Journal of Plant Nutrition and Soil Science, 2013, 176(3): 450-459. [16] 林郑和, 钟秋生, 陈常颂, 等. 缺钾对茶树幼苗叶片叶绿素荧光特性的影响[J]. 植物营养与肥料学报, 2012, 18(4): 974-980. Lin Z H, Zhong Q S, Chen C S, et al.Effects of potassium deficiency on chlorophyll fluorescence in leaves of tea seedlings[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(4): 974-980. [17] 童启庆. 茶树栽培学[M]. 北京: 中国农业出版社, 2006: 344. Tong Q Q.Tea cultivation[M]. Beijing: China Agriculture Press, 2006: 344. [18] Lin J, Wilson I W, Ge G, et al.Whole transcriptome analysis of three leaf stages in two cultivars and one of their F1 hybrid of Camellia sinensis L. with differing EGCG content[J]. Tree Genetics & Genomes, 2017, 13(1): 1-14. [19] Bhattacharya A.Soil water deficit and physiological issues in plants[M]. Singapore: Springer, 2021. [20] Huang W, Lin M Y, Liao J M, et al.Effects of potassium deficiency on the growth of tea (Camelia sinensis) and strategies for optimizing potassium levels in soil: a critical review[J]. Horticulturae, 2022, 8(7): 660. doi: 10.3390/horticulturae8070660. [21] Zhao T, Xie S, Zhang Z W.Effects of foliar-sprayed potassium dihydrogen phosphate on accumulation of flavonoids in Cabernet Sauvignon (Vitis Vinifera L.)[J]. Journal of the Science of Food and Agriculture, 2023, 103(10): 4838-4849. [22] Wang Y S, Gao L P, Shan Y, et al.Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze)[J]. Scientia Horticulturae, 2012, 141: 7-16. [23] Saxe H J, Horibe T, Balan B, et al.Two UGT84A family glycosyltransferases regulate phenol, flavonoid, and tannin metabolism in juglans regia (English Walnut)[J]. Frontiers in Plant Science, 2021, 12: 626483. doi: 10.3389/fpls.2021.626483. [24] Gao X, Zhang S X, Zhao X J, et al.Potassium-induced plant resistance against soybean cyst nematode via root exudation of phenolic acids and plant pathogen-related genes[J]. Plos One, 2018, 13(7): e0200903. doi: 10.1371/journal.pone.0200903.eCollection 2018. [25] 张锋, 韩金龙, 倪大鹏, 等. 钾素对白花丹参和紫花丹参产量、品质及养分吸收的影响[J]. 西北农业学报, 2016, 25(7): 1050-1055. Zhang F, Han J L, Ni D P, et al.Effects of Potassium fertilizer on yield, quality and nutrient uptake of Salvia miltiorrhiza Bge.f.alba and Salvia miltiorrhiza bunge[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2016, 25(7): 1050-1055. [26] 王千, 依艳丽, 张淑香. 不同钾肥对番茄幼苗酚类物质代谢作用的影响[J]. 植物营养与肥料学报, 2012, 18(3): 706-716. Wang Q, Yi Y L, Zhang S X.Effects of different potassium on phenol metabolism of tomato seedlings[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(3): 706-716. [27] Ibrahim M H, Jaafar H Z E, Karimi E, et al. Primary, secondary metabolites, photosynthetic capacity and antioxidant activity of the Malaysian Herb Kacip Fatimah (Labisia Pumila Benth) exposed to potassium fertilization under greenhouse conditions[J]. International Journal of Molecular Sciences, 2012, 13(11): 15321-15342. [28] Xiong L, Li J, Li Y, et al.Dynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis L.)[J]. Plant Physiology and Biochemistry, 2013, 71: 132-143. [29] Liu W, Zhu D W, Liu D H, et al.Comparative metabolic activity related to flavonoid synthesis in leaves and flowers of Chrysanthemum morifolium in response to K deficiency[J]. Plant and Soil, 2010, 335(1/2): 325-337. [30] Gao T, Hou B H, Shao S X, et al.Differential metabolites and transcriptional regulation of seven major tea cultivars (Camellia sinensis) in China[J]. Journal of Integrative Agriculture, 2023, 22(11): 3346-3363. [31] 张芷苓, 张媛媛, 林晓蓉, 等. 茶儿茶素合成关键酶基因CsANS和CsLAR的功能鉴定[J]. 园艺学报, 2024, 51(4): 804-814. Zhang Z L, Zhang Y Y, Lin X R, et al.Functional characterization of key genes CsANS and CsLAR involved in catechin biosynthesis in Camellia sinensis[J]. Acta Horticulturae Sinica, 2024, 51(4): 804-814. [32] Shi L Y, Cao S F, Chen X, et al.Proanthocyanidin synthesis in Chinese bayberry (Myrica rubra Sieb. et Zucc.) Fruits[J]. Frontiers in Plant Science, 2018, 9: 212. doi: 10.3389/fpls.2018.00212.eCollection 2018. [33] 陈波浪, 盛建东, 蒋平安, 等. 钾营养对水培棉花氮、磷、钾分配和3种植物激素含量的影响[J]. 新疆农业大学学报, 2008(1): 60-63. Chen B L, Sheng J D, Jiang P A, et al.Effects of potassium nutrition on distribution of nitrogen, phosphorus and potassium and the hormones content of three plants in cotton with liquid[J]. Journal of Xinjiang Agricultural University, 2008(1): 60-63. [34] 王峰, 叶静, 高敬文, 等. 外源增钾缓解铵胁迫下小麦根系受抑[J]. 浙江农业学报, 2020, 32(11): 1923-1933. Wang F, Ye J, Gao J W, et al.Potassium alleviates inhibition of ammonium stress on wheat root[J]. Acta Agriculturae Zhejiangensis, 2020, 32(11): 1923-1933. |