[1] Boss PK, Bastow RM, Mylne JS, et al.Multiple pathways in the decision to flower: enabling, promoting, and resetting[J]. Plant Cell, 2004, 16(Suppl): S18-S31. [2] Wang JW, Czech B, Weigel D.MiR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana[J]. Cell, 2009, 138(4): 738-749. [3] Valverde F, Mouradov A, Soppe W, et al.Photoreceptor regulation of CONSTANS protein in photoperiodic flowering[J]. Science, 2004, 303(5660): 1003. [4] Garner WW, Allard HA.Effect of the relative length of day and night and other factors of the environment on growth and reproduction in PLANTS1[J]. Mon Weather Rev, 2009, 48(2): 157-158. [5] Corbesier L, Vincent C, Jang S, et al.FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis[J]. Science, 2007, 316(5827): 1030-1033. [6] Simpson GG, Dean C.The Rosetta stone of flowering time[J]. Genome Biol, 2002, 1(5): 181-200. [7] Hemming MN, Peacock WJ, Dennis ES, et al.Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley[J]. Plant Physiol, 2008, 147(1): 355-366. [8] Kim JJ, Lee JH, Kim W, et al.The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis[J]. Plant Physiol, 2012, 159(1): 461-478. [9] Kumimoto R, Adam L, Hymus G, et al.The nuclear factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis[J]. Planta, 2008, 228(5): 709-723. [10] Kumimoto RW, Zhang Y, Siefers N, et al.NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod‐dependent flowering in Arabidopsis thaliana[J]. Plant J, 2010, 63(3): 379-391. [11] Siriwardana CL, Gnesutta N, Kumimoto RW, et al.Nuclear factor Y, Subunit A (NF-YA) proteins positively regulate flowering and act through FLOWERING LOCUS T[J]. Plos Genet, 2016, 12(12): e1006496. DOI: 10.1371/journal.pgen.1006496. [12] Suárezlópez P, Wheatley K, Robson F, et al.CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis[J]. Nature, 2001, 410(6832): 1116-1120. [13] Nelson DC, Lasswell J, Rogg LE, et al.FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis[J]. Cell, 2000, 101(3): 331-340. [14] Mizoguchi T, Wright L, Fujiwara S, et al.Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis[J]. Plant Cell, 2005, 17(8): 2255-2270. [15] Fornara F, Panigrahi KC, Gissot L, et al.Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response[J]. Dev Cell, 2009, 17(1): 75-86. [16] Jung J, Seo Y, Seo PJ, et al.The GIGANTEA-regulated microrna172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis[J]. The Plant Cell, 2007, 19(9): 2736-2748. [17] 郝心愿. 茶树越冬芽休眠的分子机理研究[D]. 杨凌: 西北农林科技大学, 2015. [18] Wei C, Yang H, Wang S, et al.Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proc Nat Acad Sci, 2018, 115(18): E4151-E4158. [19] 李娅莉. 不同光周期对山茶花成花影响的研究[D]. 雅安: 四川农业大学, 2005. [20] Finnegan EJ, Genger RK, Kovac K, et al.DNA methylation and the promotion of flowering by vernalization[J]. Proc Natl Acad Sci USA, 1998, 95(10): 5824-5829. [21] Koornneef M, Alonsoblanco C, Peeters AJ, et al.Genetic control of flowering time in Arabidopsis[J]. Annu rev plant Physiol plant Mo biol, 1998, 49(1): 345-370. [22] Gendall AR, Levy YY, Wilson A, et al.The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis[J]. Cell, 2001, 107(4): 525-535. [23] Bastow R, Mylne JS, Lister, C, et al.Vernalization requires epigenetic silencing of FLC by histone methylation[J]. Nature, 2004, 427(6970): 164-167. [24] Sung S, Amasino RM.Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3[J]. Nature, 2004, 427(6970): 159-164. [25] Sung S, Amasino RM.Vernalization and epigenetics: how plants remember winter[J]. Curr Opin Plant Biol, 2004, 7(1): 4-10. [26] Tabuenca MC.Winter chilling requirements of European plum varieties (Prunus domestica L)[J]. An La Estacion Exp Aula Dei, 1983. [27] Ghrab M, Mimoun MB, Masmoudi MM, et al.Chilling trends in a warm production area and their impact on flowering and fruiting of peach trees[J]. Sci Hortic, 2014, 178, 87-94. [28] Marquardt S, Boss PK, Hadfield J, et al.Additional targets of the Arabidopsis autonomous pathway members, FCA and FY[J]. J Exp Bot, 2006, 57(13): 3379-3386. [29] Michaels SD, Amasino RM.Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization[J]. Plant Cell, 2001, 13(4): 935-941. [30] Bäurle I, Smith L, Baulcombe DC, et al.Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing[J]. Science, 2007, 318(5847): 109-112. [31] Sonmez C, Bäurle I, Magusin A, et al.RNA 3' processing functions of Arabidopsis FCA and FPA limit intergenic transcription[J]. Proc Natl Acad Sci USA, 2011, 108(20): 8508-8513. [32] Liu F, Quesada V, Crevillen P, et al.The Arabidopsis RNA-Binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC[J]. Mol Cell, 2007, 28(3): 398-407. [33] He Y, Michaels SD, Amasino RM.Regulation of flowering time by histone acetylation in Arabidopsis[J]. Science, 2003, 302(5651): 1751-1754. [34] AusãN I, Alonso-Blanco C, Jarillo JA, et al(2004). Regulation of flowering time by FVE, a retinoblastoma-associated protein[J]. Nat Genet, 2004, 36(2): 162-166. [35] Lee I, Aukerman MJ, Gore SL, et al.Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in arabidopsis[J]. Plant Cell, 1994, 6(1): 75-83. [36] Aukerman MJ, Lee I, Weigel D, et al.The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression[J]. Plant J, 1999, 18(2): 195-203. [37] Lim MH, Kim J, Kim YS, et al.A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C[J]. Plant Cell, 2004, 16(3): 731-740. [38] Mockler TC, Yu X, Shalitin D, et al.Regulation of flowering time in Arabidopsis by K homology domain proteins[J]. Proc Natl Acad Sci USA, 2004, 101(34): 12759-12764. [39] 李合生. 现代植物生理学[M]. 3版. 北京: 高等教育出版社, 2006: 231. [40] Monselise SP.Recent advances in the understanding of flower formation in fruit trees and its hormonal control[J]. Acta Hortic, 1973, 34: 157-166. [41] 黄亚辉, 粟本文, 曾贞, 等. 外源激素调控茶树成花的研究[J]. 茶叶通讯, 2002 (4): 3-6. [42] 岳川, 曾建明, 曹红利, 等. 茶树赤霉素受体基因CsGID1a的克隆与表达分析[J]. 作物学报, 2013, 39(4): 599-608. [43] Thomas SG, Hu J, Dill A, et al.DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis[J]. Plant Physiol, 2004, 135(2): 1008-1019. [44] Pysh LD, Wysockadiller JW, Camilleri C, et al.The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes[J]. Plant J Cell Mol Biol, 2010, 18(1): 111-119. [45] 虞莎, 王佳伟. miR156介导的高等植物年龄途径研究进展[J]. 科学通报, 2014, 59(15): 1398-1404. [46] Wang JW.Regulation of flowering time by the miR156-mediated age pathway[J]. J Exp Bot, 2014, 65(17): 4723-4730. [47] Chen XB, Zhang ZL, Liu DM, et al.SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development[J]. J Integr Plant Biol, 2010, 52(11): 946-951. [48] Preston JC, Hileman LC.Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family[J]. Front Plant Sci, 2013, 4(80): 80. DOI: 10.3389/fpls.2013.00080. [49] Wu G, Poethig RS.Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3[J]. Development, 2006, 133(18): 3539-3547. [50] Wei Q, Ma C, Xu Y, et al.Control of chrysanthemum flowering through integration with an aging pathway[J]. Nat Commun, 2017, 8(1): 829. DOI: 10.1038/s41467- 017-00812-0. [51] 刘亚芹, 田坤红, 孙琪璐, 等. 茶树miR156a靶基因SPL6和SPL9的克隆及表达分析[J]. 茶叶科学, 2017, 37(6): 551-564. [52] Borner R, Kampmann G, Chandler J, et al.A MADS domain gene involved in the transition to flowering in Arabidopsis[J]. Plant J Cell Mol Biol, 2000, 24(5): 591-599. [53] Moon J, Suh SS, Lee H, et al.The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis[J]. Plant J, 2003, 35(5): 613-623. [54] Jung JH, Ju Y, Seo PJ, et al.The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis[J]. Plant J Cell Mol Biol, 2012, 69(4): 577-588. [55] Tao Z, Shen L, Liu C, et al.Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis[J]. Plant J, 2012, 70(4): 549-561. [56] Hepworth SR, Valverde F, Ravenscroft D, et al.Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs[J]. Embo J, 2014, 21(16): 4327-4337. [57] Lee SG, Felker P.Influence of water/heat stress on flowering and fruiting of mesquite (Prosopis glandulosa var. glandulosa)[J]. J Arid Environ, 1992, 23(3): 309-319. [58] Corrales AR, Nebauer SG, Carrillo L, et al.Characterization of tomato cycling dof factors reveals conserved and new functions in the control of flowering time and abiotic stress responses[J]. J Exp Bot, 2014, 65(4): 995-1012. [59] Kai F, Dongmei F, Zhaotang D, et al.Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant (Camellia sinensis L)[J]. Plant Physiol Biochem Ppb, 2015, 97, 350-360. [60] 王常红, 汪东风. 稀土对茶树生殖生长的影响[J]. 茶叶科学, 2000, 20(1): 55-58. [61] 杨亚军. 中国茶树栽培学[M]. 上海: 上海科学技术出版社, 2005: 74. [62] Jia S, Wang Y, Hu J, et al.Mineral and metabolic profiles in tea leaves and flowers during flower development[J]. Plant Physiol Biochem, 2016, 106: 316-326. [63] Liu F, Wang Y, Ding Z, et al.Transcriptomic analysis of flower development in tea [Camellia sinensis (L.)][J]. Gene, 2017, 631: 39-51. [64] 江昌俊. 茶树花芽分化和胚胎发育的解剖学研究[D]. 合肥: 安徽农业大学, 1987. [65] 严学成. 茶树形态结构与品质鉴定[M]. 北京: 农业出版社, 1990: 67. [66] 王丽娜, 刘青林. 花序分生组织特性基因TFL1的系统发育及其功能分析[J]. 中国生物工程杂志, 2008, 28(1): 106-112. [67] Hao XY, Yang YJ, Yue, C, et al.Comprehensive transcriptome analyses reveal differential gene expression profiles of Camellia sinensis axillary buds at para-, endo-, ecodormancy, and bud flush stages[J]. Front Plant Sci, 2017, 8(481): 553. [68] Liu C, Teo ZWN, Bi Y, et al.A conserved genetic pathway determines inflorescence architecture in Arabidopsis thaliana and rice[J]. Dev Cell, 2013, 24(6): 612-622. [69] 施雁飞. 茶树CsAP1基因克隆及AP1基因系统进化分析[D]. 西安: 陕西师范大学, 2014. [70] Coen ES, Meyerowitz EM.The war of the whorls: genetic interactions controlling flower development[J]. Nature, 1991, 353(6339): 31-37. [71] Colombo L, Franken J, Koetje E, et al.The petunia MADS box gene FBP11 determines ovule identity[J]. Plant Cell, 1995, 7(11): 1859-1868. [72] Rounsley SD, Ditta GS, Yanofsky MF.Diverse roles for MADS box genes in Arabidopsis development[J]. Plant Cell, 1995, 7(8): 1259-1269. [73] Pelaz S, Ditta GS, Baumann E, et al.B and C floral organ identity functions require SEPALLATA MADS-box genes[J]. Nature, 2000, 405(6783): 200-203. [74] 丛楠, 程治军, 万建民. 控制花器官发育的ABCDE模型[J]. 中国农学通报, 2007, 23(7): 124-128. [75] 方成刚, 夏丽飞, 陈林波, 等. 茶树CsAP2基因的全长cDNA克隆与序列分析[J]. 茶叶科学, 2014, 6: 577-582. [76] 吴致君, 卢莉, 黎星辉, 等. 茶树AP2/ERF-B3类转录因子基因的克隆与表达特性分析[J]. 南京农业大学学报, 2014, 37(4): 67-75. [77] Hao, XY.Identification and expression analysis of dormancy associated MADS-box and flowering locus T genes in tea plant (Camellia sinensis (L.) O. Kuntze)[C]//International Plant and Animal Genome Conference XXII, 2014. [78] 周坤. 茶树MADS-box家族B类基因CsGLO1和CsGLO2的克隆及其与C类基因CsAG的功能研究[D]. 西安: 陕西师范大学, 2015. [79] 靳春梅, 周坤, 张今今. 茶树花发育MADS-box转录因子CsGLO1、CsGLO2与CsAG之间的互作关系研究[J]. 植物科学学报, 2017, 35(1): 79-86. [80] 程国山. 茶树CSAG基因克隆及AG基因系统进化分析[D]. 西安: 陕西师范大学, 2014. [81] 唐红. 茶树MADS-box家族B类基因CsTM6的克隆及其与CsDEF的功能研究[D]. 西安: 陕西师范大学, 2016. [82] 秋梦颖. 茶树CsDEF基因克隆及AP3/DEF基因系统进化分析[D]. 西安: 陕西师范大学, 2015. [83] Zhang CC, Tan LQ, Wang LY, et al.Cloning and characterization of an S-RNase gene in Camellia sinensis[J]. Sci Hortic, 2016, 207: 218-224. [84] Fang WP.Differentially expression of Tua1, a tubulin-encoding gene, during glowering of tea plant Camellia sinensis (L.) O. Kuntze using cDNA amplified fragment length polymorphism technique[J]. Acta Bioch Bioph Sin, 2006, 38(9): 653-662. [85] 陈暄, 汤茶琴, 邹中伟, 等. 茶树花发育相关的一个钙依赖蛋白激酶基因的克隆与表达分析[J]. 茶叶科学, 2009, 29(1): 47-52. [86] 陈聪, 江昌俊, 叶爱华, 等. 茶树PCP基因内含子的克隆与序列分析[J]. 安徽农学通报, 2009, 15(11): 69, 190. DOI: 10.16377/j.cnki.issn1007-7731.2009.11.038. [87] 余梅, 江昌俊, 叶爱华, 等. 茶树花粉特异蛋白基因CsPSP1的分离及序列分析[J]. 激光生物学报, 2008, 17(2): 206-212. [88] 龚莹, 余梅, 江昌俊, 等. 茶树花粉特异蛋白基因CsPSP的反义载体构建[J]. 安徽农业大学学报, 2012, 39(3): 397-400. [89] 余梅, 江昌俊, 房婉萍, 等. 茶树花蕾14-3-3蛋白基因的分子克隆及差异表达分析[J]. 中国农业科学, 2008, 41(10): 2983-2991. [90] 叶爱华, 余梅, 朱林, 等. 用cDNA-AFLP及其改进的方法分析茶树花发育过程中的基因表达[J]. 激光生物学报, 2008, 17(6): 733-738. [91] 韩兴杰, 徐玲玲, 廖亮, 等. 茶树LEAFY基因的克隆和表达分析[J]. 园艺学报, 2015, 42(8): 1606-1616. [92] 丁菲, 庞磊, 李叶云, 等. 茶树海藻糖-6-磷酸合成酶基因(CsTPS)的克隆及表达分析[J]. 农业生物技术学报, 2012, 20(11): 1253-1261. [93] 郝心愿, 曹红利, 杨亚军, 等. 茶树生长素响应因子基因CsARF1的克隆与表达分析[J]. 作物学报, 2013, (3): 389-397. [94] 李梅, 陈林波, 田易萍, 等. 雌蕊缺失茶树花3个发育期的数字基因表达谱分析[J]. 茶叶科学, 2017, 37(1): 97-107. |