茶叶科学 ›› 2019, Vol. 39 ›› Issue (1): 23-33.doi: 10.13305/j.cnki.jts.2019.01.003
戴申, 鹿颜, 余鹏辉, 龚雨顺*, 刘仲华*
修回日期:
2018-08-27
出版日期:
2019-02-15
发布日期:
2019-07-17
通讯作者:
* gongyushun@foxmail.com,larkin-liu@163.com
作者简介:
戴申,女,硕士研究生,主要从事茶叶功能成分化学研究。
基金资助:
DAI Shen, LU Yan, YU Penghui, GONG Yushun*, LIU Zhonghua*
Revised:
2018-08-27
Online:
2019-02-15
Published:
2019-07-17
摘要: 综述了茶叶及其主要功能成分茶多酚、茶氨酸和咖啡碱对秀丽线虫、果蝇及老鼠等多种模式生物的抗衰老作用;概述了茶叶预防衰老相关疾病的保健功能;阐述了茶叶通过调节能量感应网络延缓衰老的研究现状;简单讨论了今后茶叶抗衰老研究的方向。
中图分类号:
戴申, 鹿颜, 余鹏辉, 龚雨顺, 刘仲华. 茶叶预防衰老及衰老相关疾病研究进展[J]. 茶叶科学, 2019, 39(1): 23-33. doi: 10.13305/j.cnki.jts.2019.01.003.
DAI Shen, LU Yan, YU Penghui, GONG Yushun, LIU Zhonghua. Research Progress of The Preventing Effects of Tea on Aging and Aged-related Pathologies[J]. Journal of Tea Science, 2019, 39(1): 23-33. doi: 10.13305/j.cnki.jts.2019.01.003.
[1] SARASWAT K, RIZVI S I.Novel strategies for anti-aging drug discovery[J]. Expert Opinion on Drug Discovery, 2017, 12(9): 955-966. [2] KENT K, CHARLTON K E, RUSSELL J, et al.Estimation of flavonoid intake in older Australians: secondary data analysis of the blue mountains eye study[J]. Journal of Nutrition in Gerontology and Geriatrics, 2015, 34(4): 388-398. [3] LI Y M, CHAN H Y, HUANG Y, et al.Green tea catechins upregulate superoxide dismutase and catalase in fruit flies[J]. Mol Nutr Food Res, 2007, 51(5): 546-554. [4] LOPEZ T E, PHAM H M, NGUYEN B V, et al.Green tea polyphenols require the mitochondrial iron transporter, mitoferrin, for lifespan extension in [5] STRONG R, MILLER R A, ASTLE C M, et al.Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice[J]. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 2013, 68(1): 6-16. [6] XIONG L G, HUANG J A, LI J, et al.Black tea increased survival of [7] ZHANG C, QIN Y Y, WEI X, et al.Tea consumption and risk of cardiovascular outcomes and total mortality: a systematic review and meta-analysis of prospective observational studies[J]. European Journal of Epidemiology, 2015, 30(2): 103-113. [8] QI G, MI Y, WANG Y, et al.Neuroprotective action of tea polyphenols on oxidative stress-induced apoptosis through the activation of the TrkB/CREB/BDNF pathway and Keap1/Nrf2 signaling pathway in SH-SY5Y cells and mice brain[J]. Food & Function, 2017, 8(12): 4421-4432. [9] MATSUI T, TANAKA T, TAMURA S, et al.Alpha-glucosidase inhibitory profile of catechins and theaflavins[J]. Journal of Agricultural and Food Chemistry, 2007, 55(1): 99-105. [10] YI ZENG H C, TING NI, RONGPING RUAN, CHAO NIE. Interaction between FOXO1A-209 genotype and tea drinking is significantly associated with reduced mortality at advanced ages[J]. Rejuvenation Res, 2016, 19(3): 195-203. [11] KITANI K, OSAWA T, YOKOZAWA T.The effects of tetrahydrocurcumin and green tea polyphenol on the survival of male C57BL/6 mice[J]. Biogerontology, 2007, 8(5): 567-573. [12] FEI T Y, FEI J, HUANG F, et al.The anti-aging and anti-oxidation effects of tea water extract in [13] LOPEZ T, SCHRINER S E, OKORO M, et al.Green tea polyphenols extend the lifespan of male [14] PENG C, CHAN H Y, LI Y M, et al.Black tea theaflavins extend the lifespan of fruit flies[J]. Experimental Gerontology, 2009, 44(12): 773-783. [15] SAUL N, PIETSCH K, MENZEL R, et al.Catechin induced longevity in [16] SAUL N, PIETSCH K, STURZENBAUM S R, et al.Diversity of polyphenol action in [17] SI H, FU Z, BABU P V, et al.Dietary epicatechin promotes survival of obese diabetic mice and [18] ARCHER C R, KOHLER A, PIRK C W, et al.Antioxidant supplementation can reduce the survival costs of excess amino acid intake in honeybees[J]. Journal of Insect Physiology, 2014, 71(17): 78-86. [19] PENCE B D, BHATTACHARYA T K, PARK P, et al.Long-term supplementation with EGCG and beta-alanine decreases mortality but does not affect cognitive or muscle function in aged mice[J]. Experimental Gerontology, 2017, 98: 22-29. [20] ZHANG L, JIE G, ZHANG J, et al.Significant longevity-extending effects of EGCG on [21] NIU Y, NA L, FENG R, et al.The phytochemical, EGCG, extends lifespan by reducing liver and kidney function damage and improving age-associated inflammation and oxidative stress in healthy rats[J]. Aging Cell, 2013, 12(6): 1041-1049. [22] WAGNER A E, PIEGHOLDT S, RABE D, et al.Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in [23] BARTHOLOME A, KAMPKOTTER A, TANNER S, et al.Epigallocatechin gallate-induced modulation of FoxO signaling in mammalian cells and [24] LIU H W, CHAN Y C, WANG M F, et al.Dietary (-)-Epigallocatechin-3-gallate Supplementation Counteracts Aging-Associated Skeletal Muscle Insulin Resistance and Fatty Liver in Senescence-Accelerated Mouse[J]. Journal of Agricultural and Food Chemistry, 2015, 63(38): 8407-8417. [25] XIONG L G, CHEN Y J, TONG J W, et al.Epigallocatechin-3-gallate promotes healthy lifespan through mitohormesis during early-to-mid adulthood in [26] PALLAUF K, DUCKSTEIN N, RIMBACH G.A literature review of flavonoids and lifespan in model organisms[J]. The Proceedings of the Nutrition Society, 2017, 76(2): 145-162. [27] SAUL N, PIETSCH K, MENZEL R, et al.Quercetin-mediated longevity in [28] PIETSCH K, SAUL N, MENZEL R, et al.Quercetin mediated lifespan extension in [29] KAMPKOTTER A, TIMPEL C, ZURAWSKI R F, et al.Increase of stress resistance and lifespan of [30] BUCHTER C, ACKERMANN D, HAVERMANN S, et al.Myricetin-mediated lifespan extension in [31] GRUNZ G, HAAS K, SOUKUP S, et al.Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in [32] XU M, PIRTSKHALAVA T, FARR J N, et al.Senolytics improve physical function and increase lifespan in old age[J]. Nature Medicine, 2018, 24(8): 1246-1256. [33] DUENAS M, SURCO-LAOS F, GONZALEZ-MANZANO S, et al.Deglycosylation is a key step in biotransformation and lifespan effects of quercetin-3- [34] PIETSCH K, SAUL N, CHAKRABARTI S, et al.Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in [35] ZHENG S Q, HUANG X B, XING T K, et al.Chlorogenic Acid Extends the Lifespan of [36] RYU D, MOUCHIROUD L, ANDREUX P A, et al.Urolithin A induces mitophagy and prolongs lifespan in [37] ZARSE K, JABIN S, RISTOW M.L-Theanine extends lifespan of adult [38] TAKAGI Y, KURIHARA S, HIGASHI N, et al.Combined administration of (L)-cystine and (L)-theanine enhances immune functions and protects against influenza virus infection in aged mice[J]. The Journal of Veterinary Medical Science, 2010, 72(2): 157-165. [39] UNNO K, FUJITANI K, TAKAMORI N, et al.Theanine intake improves the shortened lifespan, cognitive dysfunction and behavioural depression that are induced by chronic psychosocial stress in mice[J]. Free Radic Res, 2011, 45(8): 966-974. [40] ZHANG X, LIU X Y, CHEN L, et al.Caffeine delays oocyte aging and maintains the quality of aged oocytes safely in mouse[J]. Oncotarget, 2017, 8(13): 20602-20611. [41] LEE J H, CAMPBELL K H S. Caffeine treatment prevents age-related changes in ovine oocytes and increases cell numbers in blastocysts produced by somatic cell nuclear transfer[J]. Cloning And Stem Cells, 2008, 10(3): 381-390. [42] MIAO Y L, SUN G Y, ZHANG X, et al.Centrosome abnormalities during porcine oocyte aging[J]. Environmental and Molecular Mutagenesis, 2009, 50(8): 666-671. [43] BRIDI J C, BARROS A G, SAMPAIO L R, et al. Lifespan extension induced by caffeine in fnagi.2015.00220. [44] MATT G S B E M Y R M K. Caffeine extends life span, improves healthspan, and delays age-associated pathology in [45] STRACHECKA A, KRAUZE M, OLSZEWSKI K, et al.Unexpectedly strong effect of caffeine on the vitality of western honeybees ( [46] TOWNSEND N, WILSON L, BHATNAGAR P, et al.Cardiovascular disease in Europe: epidemiological update 2016[J]. European Heart journal, 2016, 37(42): 3232-3245. [47] WOODWARD K A, DRAIJER R, THIJSSEN D H J, et al. Polyphenols and microvascular function in humans: a systematic review[J]. Curr Pharm Des, 2018, 24(2): 203-226. [48] KOKUBO Y, ISO H, SAITO I, et al.The impact of green tea and coffee consumption on the reduced risk of stroke incidence in Japanese population: the Japan public health center-based study cohort[J]. Stroke, 2013, 44(5): 1369-1374. [49] MILLER P E, ZHAO D, FRAZIER-WOOD A C, et al. Associations of coffee, tea, and caffeine intake with coronary artery calcification and cardiovascular events[J]. The American Journal of Medicine, 2017, 130(2): 188-197. [50] TIAN C, HUANG Q, YANG L, et al.Green tea consumption is associated with reduced incident CHD and improved CHD-related biomarkers in the Dongfeng-Tongji cohort[J]. Scientific Reports, 2016, 6: 24353. [51] WANG Z M, ZHOU B, WANG Y S, et al.Black and green tea consumption and the risk of coronary artery disease: a meta-analysis[J]. The American Journal of Clinical Nutrition, 2011, 93(3): 506-515. [52] MINEHARU Y, KOIZUMI A, WADA Y, et al.Coffee, green tea, black tea and oolong tea consumption and risk of mortality from cardiovascular disease in Japanese men and women[J]. Journal of Epidemiology & Community Health, 2011, 65(3): 230-240. [53] PASTORIZA S, MESíAS M, CABRERA C, et al. Healthy properties of green and white teas: an update[J]. Food Funct, 2017, 8(8): 2650-2662. [54] YANG C S, ZHANG J, ZHANG L, et al.Mechanisms of body weight reduction and metabolic syndrome alleviation by tea[J]. Mol Nutr Food Res, 2016, 60(1): 160-174. [55] XU P, CHEN H, WANG Y, et al.Oral administration of puerh tea polysaccharides lowers blood glucose levels and enhances antioxidant status in alloxan‐induced diabetic mice[J]. J Food Sci, 2012, 77(11): 246-252. [56] DE AMORIM L M N, VAZ S R, CESáRIO G, et al. Effect of green tea extract on bone mass and body composition in individuals with diabetes[J]. J Funct Foods, 2018, 40: 589-594. [57] WU A H, SPICER D, STANCZYK F Z, et al.Effect of 2-month controlled green tea intervention on lipoprotein cholesterol, glucose, and hormone levels in healthy postmenopausal women[J]. Cancer Prevention Research, 2012, 5(3): 393-402. [58] NGUYEN C T, LEE A H, PHAM N M, et al.Habitual tea drinking associated with a lower risk of type 2 diabetes in Vietnamese adults[J]. Asia Pacific Journal of Clinical Nutrition, 2018, 27(3): 701-706. [59] GROSSO G, STEPANIAK U, MICEK A, et al.Association of daily coffee and tea consumption and metabolic syndrome: results from the Polish arm of the HAPIEE study[J]. European Journal of Nutrition, 2015, 54(7): 1129-1137. [60] MIELGO-AYUSO J, BARRENECHEA L, ALCORTA P, et al.Effects of dietary supplementation with epigallocatechin-3-gallate on weight loss, energy homeostasis, cardiometabolic risk factors and liver function in obese women: randomised, double-blind, placebo-controlled clinical trial[J]. The British Journal of Nutrition, 2014, 111(7): 1263-1271. [61] MAUFRAIS C, SARAFIAN D, DULLOO A, et al.Cardiovascular and metabolic responses to the ingestion of caffeinated herbal tea: drink it hot or cold?[J]. Front Physiol, 2018, 9: 315. [62] WEINREB O, AMIT T, MANDEL S, et al.Neuroprotective molecular mechanisms of (-)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties[J]. Genes & Nutrition, 2009, 4(4): 283-296. [63] FERREIRA M A, SILVA D M, DE MORAIS A C, JR., et al. Therapeutic potential of green tea on risk factors for type 2 diabetes in obese adults - a review[J]. Obesity reviews: an official journal of the International Association for the Study of Obesity, 2016, 17(12): 1316-1328. [64] YOUDIM S M T A L K L R M. Targeting multiple neurodegenerative diseases etiologies with multimodal-acting green tea catechins[J]. J Nutr Biochem, 2008, 138(8): 1578S-1583S. [65] FERNANDO W, SOMARATNE G, GOOZEE K G, et al.Diabetes and Alzheimer's disease: can tea phytochemicals play a role in prevention?[J]. Journal of Alzheimer's disease : JAD, 2017, 59(2): 481-501. [66] BEKING K, VIEIRA A.Flavonoid intake and disability-adjusted life years due to Alzheimer’s and related dementias: a population-based study involving twenty-three developed countries[J]. Public Health Nutr, 2010, 13(09): 1403-1409. [67] QI H, LI S.Dose-response meta-analysis on coffee, tea and caffeine consumption with risk of Parkinson's disease[J]. Geriatrics & Gerontology International, 2014, 14(2): 430-439. [68] MI Y, QI G, FAN R, et al.EGCG ameliorates diet-induced metabolic syndrome associating with the circadian clock[J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2017, 1863(6): 1575-1589. [69] VAN HEEMST D.Insulin, IGF-1 and longevity[J]. Aging and Disease, 2010, 1(2): 147-157. [70] BURNETT P E, BARROW R K, COHEN N A, et al.RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(4): 1432-1437. [71] Li M, He Z, Ermakova S, et al.Direct inhibition of insulin-like growth factor-I receptor kinase activity by (-)-epigallocatechin-3-gallate regulates cell transformation[J]. Cancer Epidemiology and Prevention Biomarkers, 2007, 16(3): 598-605. [72] TANIGUCHI C M, EMANUELLI B, KAHN C R.Critical nodes in signalling pathways: insights into insulin action[J]. Nature Reviews Molecular Cell Biology, 2006, 7(2): 85-96. [73] WEBB A E, KUNDAJE A, BRUNET A.Characterization of the direct targets of FOXO transcription factors throughout evolution[J]. Aging Cell, 2016, 15(4): 673-685. [74] TEMPLEMAN N M, MURPHY C T.Regulation of reproduction and longevity by nutrient-sensing pathways[J]. The Journal of Cell Biology, 2018, 217(1): 93-106. [75] YUKIKO K. KANEKO, MIKI TAKII, YUMIKO KOJIMA, et al.Structure-Dependent Inhibitory Effects of Green Tea Catechins on Insulin Secretion from Pancreatic β-Cells[J]. Biol Pharm Bull, 2015, 3(38): 476-481. [76] LUO K W, LUNG W Y, CHUN X, et al.EGCG inhibited bladder cancer T24 and 5637 cell proliferation and migration via PI3K/AKT pathway[J]. Oncotarget, 2018, 9(15): 12261-12272. [77] KAMPKOTTER A, GOMBITANG NKWONKAM C, ZURAWSKI R F, et al.Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism [78] ABBAS S, WINK M.Epigallocatechin gallate inhibits beta amyloid oligomerization in [79] RUSSO G L, RUSSO M, UNGARO P.AMP-activated protein kinase: a target for old drugs against diabetes and cancer[J]. Biochemical Pharmacology, 2013, 86(3): 339-350. [80] SALMINEN A, KAARNIRANTA K.AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network[J]. Ageing Research Reviews, 2012, 11(2): 230-241. [81] EGUCHI T, KUMAGAI C, FUJIHARA T, et al.Black tea high-molecular-weight polyphenol stimulates exercise training-induced improvement of endurance capacity in mouse via the link between AMPK and GLUT4[J]. PloS One, 2013, 8(7): e69480. [82] HUANG H C, LIN J K.Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet[J]. Food & Function, 2012, 3(2): 170-177. [83] ROCHA A, BOLIN A P, CARDOSO C A, et al.Green tea extract activates AMPK and ameliorates white adipose tissue metabolic dysfunction induced by obesity[J]. European Journal of Nutrition, 2016, 55(7): 2231-2244. [84] MAGRI L, GALLI R. mTOR signaling in neural stem cells: from basic biology to disease[J]. Cellular and Molecular Life Sciences: CMLS, 2013, 70(16): 2887-2898. [85] KENNEDY B K, LAMMING D W.The mechanistic target of rapamycin: the grand conductor of metabolism and aging[J]. Cell Metabolism, 2016, 23(6): 990-1003. [86] RALLIS C, BAHLER J.Inhibition of TORC1 signaling and increased lifespan: gained in translation?[J]. Aging, 2013, 5(5): 335-336. [87] RALLIS C, CODLIN S, BAHLER J.TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast[J]. Aging Cell, 2013, 12(4): 563-573. [88] HOLCZER M, BESZE B, ZAMBO V, et al. Epigallocatechin-3-gallate (EGCG) promotes autophagy-dependent survival via influencing the balance of mTOR-AMPK pathways upon endoplasmic reticulum stress [J]. Oxid Med Cell Longev, 2018, 2018(2018): 6721530. https://doi.org/10.1155/2018/6721530. [89] LIU S, WANG X J, LIU Y, et al.PI3K/AKT/mTOR signaling is involved in (-)-epigallocatechin-3-gallate-induced apoptosis of human pancreatic carcinoma cells[J]. The American Journal of Chinese Medicine, 2013, 41(3): 629-642. [90] AGUILANIU H, GUSTAFSSON L, RIGOULET M, et al.Asymmetric inheritance of oxidatively damaged proteins during cytokinesis[J]. Science, 2003, 299(5613): 1751-1753. [91] DE LUCIA C, MURPHY T, THURET S.Emerging molecular pathways governing dietary regulation of neural stem cells during aging[J]. Front Physiol, 2017, 8: 17. [92] HAIGIS M C, GUARENTE L P.Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction[J]. Genes & Development, 2006, 20(21): 2913-2921. [93] BARZILAI N, HUFFMAN D M, MUZUMDAR R H, et al.The critical role of metabolic pathways in aging[J]. Diabetes, 2012, 61(6): 1315-1322. [94] DE BOER V C, DE GOFFAU M C, ARTS I C, et al. SIRT1 stimulation by polyphenols is affected by their stability and metabolism[J]. Mechanisms of Ageing and Development, 2006, 127(7): 618-627. [95] 刘晓慧, 揭国良, 林康, 等. EGCG和茶氨酸对细胞氧化损伤的协同保护和修复作用研究[J]. 茶叶科学, 2014, 34(3): 239-247. [96] NAKAGAWA K, NAKAYAMA K, NAKAMURA M, et al.Effects of co-administration of tea epigallocatechin-3-gallate (EGCG) and caffeine on absorption and metabolism of EGCG in humans[J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(9): 2014-2017. [97] DE AMICIS F, SANTORO M, GUIDO C, et al.Epigallocatechin gallate affects survival and metabolism of human sperm[J]. Mol Nutr Food Res, 2012, 56(11): 1655-1664. [98] DESJARDINS D, CACHO-VALADEZ B, LIU J, et al.Antioxidants reveal an inverted U-shaped dose-response relationship between reactive oxygen species levels and the rate of aging in [99] DUDA-CHODAK A, TARKO T, SATORA P, et al.Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review[J]. European Journal of Nutrition, 2015, 54(3): 325-341. [100] HANSEN M, KENNEDY B K.Does longer lifespan mean longer healthspan?[J]. Trends Cell Biol, 2016, 26(8): 565-568. |
[1] | 王留彬, 黄丽蕴, 滕翠琴, 吴立赟, 成浩, 于翠平, 王丽鸳. 梧州茶树种质资源的遗传多样性及亲缘关系分析[J]. 茶叶科学, 2022, 42(5): 601-609. |
[2] | 高健健, 陈丹, 彭佳堃, 吴文亮, 蔡良绥, 蔡亚威, 田军, 万云龙, 孙威江, 黄艳, 王哲, 林智, 戴伟东. 基于代谢组学的云南白茶与福鼎白茶化学成分比较分析[J]. 茶叶科学, 2022, 42(5): 623-637. |
[3] | 周汉琛, 杨霁虹, 徐玉婕, 吴琼, 雷攀登. 香叶醇生物合成相关基因NUDX1的进化分析[J]. 茶叶科学, 2022, 42(5): 638-648. |
[4] | 陈琪予, 马建强, 陈杰丹, 陈亮. 利用图像特征分析茶树成熟叶表型的遗传多样性[J]. 茶叶科学, 2022, 42(5): 649-660. |
[5] | 李艳春, 汪航, 李兆伟, 叶菁, 王义祥. 几种改良措施对酸化茶园土壤理化性质和微生物群落结构的影响[J]. 茶叶科学, 2022, 42(5): 661-671. |
[6] | 孙悦, 吴俊, 韦朝领, 刘梦月, 高晨曦, 张灵枝, 曹士先, 余顺甜, 金珊, 孙威江. 抗小贯松村叶蝉和茶棍蓟马的茶树种质筛选及其抗性相关因素分析[J]. 茶叶科学, 2022, 42(5): 689-704. |
[7] | 陈宇宏, 高颖, 韩震, 尹军峰. 不同种质茶叶籽皂素含量及组成分析[J]. 茶叶科学, 2022, 42(5): 705-716. |
[8] | 陈慧, 杨丽玲, 陈金华, 黄建安, 龚雨顺, 李适. 控温渥堆对黑毛茶香气品质的影响[J]. 茶叶科学, 2022, 42(5): 717-730. |
[9] | 李峥, 刘锭, 霍增辉, 陈富桥. 中国与RCEP成员国茶叶贸易竞争性与互补性分析[J]. 茶叶科学, 2022, 42(5): 740-752. |
[10] | 俞蓉欣, 郑芹芹, 陈红平, 张劲松, 张相春. 儿茶素生物医用纳米材料研究进展[J]. 茶叶科学, 2022, 42(4): 447-462. |
[11] | 王玉源, 刘任坚, 刘少群, 舒灿伟, 孙彬妹, 郑鹏. 茶树R2R3-MYB转录因子CsTT2表达分析及功能初步鉴定[J]. 茶叶科学, 2022, 42(4): 463-476. |
[12] | 李晶, 林彩容, 黄艳, 邓旭铭, 王艺清, 孙威江. 茶多酚对农杆菌介导的植物遗传转化体系的影响[J]. 茶叶科学, 2022, 42(4): 477-490. |
[13] | 赵东伟. 大叶茶(Camellia sinensis var. assamica)的命名、模式及自然分布[J]. 茶叶科学, 2022, 42(4): 491-499. |
[14] | 刘建军, 张金玉, 彭叶, 刘晓博, 杨云, 黄涛, 温贝贝, 李美凤. 不同光质摊青对夏秋茶树鲜叶挥发性物质及其绿茶品质影响研究[J]. 茶叶科学, 2022, 42(4): 500-514. |
[15] | 汪为通, 周孝贵, 张欣欣, 王志博, 张大羽, 肖强. 条纹蝇虎对灰茶尺蠖幼虫的捕食作用[J]. 茶叶科学, 2022, 42(4): 515-524. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|