茶叶科学 ›› 2019, Vol. 39 ›› Issue (4): 365-371.doi: 10.13305/j.cnki.jts.2019.04.001
• • 下一篇
徐佳佳1,2, 广敏2, 史书林2, 郜红建1,2,*
收稿日期:
2019-01-17
出版日期:
2019-08-15
发布日期:
2019-09-10
通讯作者:
*hjgao@ahau.edu.cn
作者简介:
徐佳佳,女,硕士研究生,主要从事茶树吸收氟元素的生理与生物学方面的研究。
基金资助:
XU Jiajia1,2, GUANG Min2, SHI Shulin2, GAO Hongjian1,2,*
Received:
2019-01-17
Online:
2019-08-15
Published:
2019-09-10
摘要: 茶树[Camellia sinensis(L.) O. Kuntze]是高富集氟的植物,氟在叶片中被大量累积。饮茶是人们摄取氟的重要途径,氟的过量摄入会影响人体健康。茶树主要通过根系从土壤中吸收富集氟,但是根系跨膜吸收氟的生理与分子机制尚不清楚。本文综述了茶树根系吸收氟的主动和被动途径,总结根系H+-ATPase和Ca2+-ATPase介导氟的跨膜主动吸收过程与分子机制;剖析离子通道和Al-F络合在根系被动吸收氟过程中的作用及微观过程;分析影响根系吸收富集氟的主要因素及其调控措施。提出通过研究茶树根系氟跨膜吸收相关转运蛋白及其相关基因的克隆、表达和功能验证,以揭示跨膜吸收氟的分子机制;进而研究调控根系对氟的选择吸收,以保障茶叶质量安全和饮茶健康。
中图分类号:
徐佳佳, 广敏, 史书林, 郜红建. 茶树根系跨膜吸收氟的生理与分子机制[J]. 茶叶科学, 2019, 39(4): 365-371. doi: 10.13305/j.cnki.jts.2019.04.001.
XU Jiajia, GUANG Min, SHI Shulin, GAO Hongjian. Physiological and Molecular Mechanisms of Transmembrane Fluoride Uptake by Tea Roots[J]. Journal of Tea Science, 2019, 39(4): 365-371. doi: 10.13305/j.cnki.jts.2019.04.001.
[1] | Dey S, Giri B.Fluoride fact on human health and health problems: A review[J]. Medical & Clinical Reviews, 2016, 2(1): 2. DOI: 10.21767/2471-299X.1000011. |
[2] | 张楠, 张凌云. 茶叶中氟的安全性与检测方法研究进展[J]. 茶叶, 2009, 35(1): 3-6. |
[3] | Weinstein L H, Davison A.Fluorides in the environment: effects on plants and animals[M]. Oxfordshire: CABI, 2004. |
[4] | Zhang L, Li Q, Ma L, et al.Characterization of fluoride uptake by roots of tea plants (Camellia sinensis, (L.) O. Kuntze)[J]. Plant & Soil, 2013, 366(1/2): 659-669. |
[5] | Lu Y, Guo W F, Yang X Q.Fluoride content in tea and its relationship with tea quality[J]. Journal of Agricultural and Food Chemistry, 2004, 52(14): 4472-4476. |
[6] | Shu W S, Zhang Z Q, Lan C Y, et al.Fluoride and aluminium concentrations of tea plants and tea products from Sichuan Province, PR China[J]. Chemosphere, 2003, 52(9): 1475-1482. |
[7] | 董青华, 孙威江, 杨贤强. 茶树吸收氟的根际效应及富集机理研究进展[J]. 亚热带农业研究, 2009, 5(3): 162-166. |
[8] | 蔡荟梅, 彭传燚, 李成林, 等. 三个品种茶树氟富集特性及其在亚细胞中的分布[J]. 中国农业科学, 2013, 46(8): 1668-1675. |
[9] | 彭传燚, 陈静, 蔡荟梅, 等. 茶树对氟的吸收动力学特性研究[J]. 热带作物学报, 2013, 34(3): 495-500. |
[10] | 王玉梅, 柴如山, 郜红建. 茶树根系跨膜主动吸收氟的表观特征[J]. 农业环境科学学报, 2016, 35(8): 1473-1479. |
[11] | Li Q S, Lin X M, Qiao R Y, et al.Effect of fluoride treatment on gene expression in tea plant (Camellia sinensis)[J]. Scientific Reports, 2017, 7(1): 9847. DOI: https://www.nature.com/articles/s41598-017-08587-6. |
[12] | Nagata T, Hayatsu M, Kosuge N.Identification of aluminium forms in tea leaves by 27Al NMR[J]. Phytochemistry, 1992, 31(4): 1215-1218. |
[13] | Nagata T, Hayatsu M, Kosuge N.Aluminium kinetics in the tea plant using 27Al and 19F NMR[J]. Phytochemistry, 1993, 32(4): 771-775. |
[14] | Cao J, Luo S F, Liu J W, et al.Safety evaluation on fluoride content in black tea[J]. Food Chemistry, 2004, 88(2): 233-236. |
[15] | Yi X Y, Qiao S, Ma L F, et al.Soil fluoride fractions and their bioavailability to tea plants (Camellia sinensis L.)[J]. Environmental Geochemistry & Health, 2017, 39(5): 1005-1016. |
[16] | 谢忠雷, 陈卓, 孙文田, 等. 不同茶园茶叶氟含量及土壤氟的形态分布[J]. 吉林大学学报(地球科学版), 2008, 38(2): 293-298. |
[17] | 谢正苗, 吴卫红. 环境中氟化物的迁移和转化及其生态效应[J]. 环境工程学报, 1999(2): 40-53. |
[18] | Ruan J Y, Wong M H.Accumulation of fluoride and aluminium related to different varieties of tea plant[J]. Environmental Geochemistry and Health, 2001, 23(1): 53-63. |
[19] | Ruan J T, Ma L, Shi Y, et al.Uptake of fluoride by tea plant (Camellia sinensis L.) and the impact of aluminium[J]. Journal of the Science of Food & Agriculture, 2003, 83(13): 1342-1348. |
[20] | Horie H, Nagata T, Mukai T, et al.Determination of the chemical form of fluorine in tea infusions by 19F-NMR[J]. Bioscience Biotechnology and Biochemistry, 1992, 56(9): 1474-1475. |
[21] | 张显晨, 郜红建, 张正竹, 等. 铝对氟在茶树体内吸收与分配的影响[J]. 食品科学, 2013, 34(5): 147-150. |
[22] | Palmgren M, Harper J.Pumping with plant P-type ATPases[J]. Journal of Experimental Botany, 1999, 50: 883-893. |
[23] | Sperandio M V L, Santos L A, Bucher C A, et al. Isoforms of plasma membrane H+-ATPase in rice root and shoot are differentially induced by starvation and resupply of NO3-, or NH4+[J]. Plant Science, 2011, 180(2): 251-258. |
[24] | Teakle N L, Tyerman S D.Mechanisms of Cl- transport contributing to salt tolerance[J]. Plant Cell & Environment, 2010, 33(4): 566-589. |
[25] | White P J.Ion uptake mechanisms of individual cells and roots: short-distance transport[J]. Marschners Mineral Nutrition of Higher Plants, 2012, 1(5): 7-47. |
[26] | Shen H, Chen J, Wang Z, et al.Root plasma membrane H+-ATPase is involved in the adaptation of soybean to phosphorus starvation[J]. Journal of Experimental Botany, 2006, 57(6): 1353-1362. |
[27] | Zhang X C, Gao H J, Yang T Y, et al.Al3+-promoted fluoride accumulation in tea plants (Camellia sinensis) was inhibited by an anion channel inhibitor DIDS[J]. Journal of the Science of Food & Agriculture, 2016, 96(12): 4224-4230. |
[28] | Pedchenko V K, Nasirova G F, Palladina T A.Lysophosphatidylcholine specifically stimulates plasma membrane H+-ATPase from corn roots[J]. FEBS Letters, 1990, 275(1/2): 205-208. |
[29] | Pottosin I, Velarde-Buendía A M, Bose J, et al. Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots[J]. Journal of Experimental Botany, 2014, 65(9): 2463-2472. |
[30] | Roberts S K.Plasma membrane anion channels in higher plants and their putative functions in roots[J]. New Phytologist, 2006, 169(4): 647-666. |
[31] | Zhang X C, Gao H J, Wu H H, et al.Ca2+ and CaM are involved in Al3+ pretreatment-promoted fluoride accumulation in tea plants (Camellia sinesis L.)[J]. Plant Physiology and Biochemistry, 2015, 96: 288-295. |
[32] | 何龙飞, 刘友良, 沈振国, 等. 植物离子通道特征、功能、调节与分子生物学[J]. 植物学报, 1999, 16(5): 517-525. |
[33] | Zhang X C, Gao H J, Zhang Z Z, et al.Influences of different ion channel inhibitors on the absorption of fluoride in tea plants (Camellia sinesis L.)[J]. Plant Growth Regulation, 2013, 69(1): 99-106. |
[34] | Chapman B E, Kuchel P W.Fluoride transmembrane exchange in human erythrocytes measured with 19F NMR magnetization transfer[J]. European Biophysics Journal, 1990, 19(1): 41-45. |
[35] | Chen Z, Beck T L.Free energies of ion binding in the bacterial CLC-ec1 chloride transporter with implications for the transport mechanism and selectivity[J]. Journal of Physical Chemistry B, 2016, 120(12): 3129-3139. |
[36] | Tyerman S D.Anion channels in plants[J]. Annual Review of Plant Biology, 1992, 43(1): 351-373. |
[37] | 戴松香, 陈少良. 植物根细胞离子通道研究进展[J]. 北京林业大学学报, 2005, 27(3): 98-103. |
[38] | White P J, Broadley M R.Chloride in soils and its uptake and movement within the plant: a review[J]. Annals of Botany, 2001, 88(6): 967-988. |
[39] | Stockbridge R B, Robertson J L, Ludmila K P, et al.A family of fluoride-specific ion channels with dual-topology architecture[J]. eLife, 2013, 2: e01084. DOI: 10.7554/eLife.01084. |
[40] | Stockbridge R B, Lim H H, Otten R, et al.Fluoride resistance and transport by riboswitch-controlled CLC antiporters[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(38): 15289-15294. |
[41] | Brammer A E, Stockbridge R B, Miller C.F-/Cl- selectivity in CLCF-type F-/H+ antiporters[J]. The Journal of General Physiology, 2014, 144(2): 129-136. |
[42] | Berbasova T, Nallur S, Sells T, et al. Fluoride export (FEX) proteins from fungi, plants and animals are ‘single barreled’ channels containing one functional and one vestigial ion pore [J]. Plos One, 2017, 12(5): e0177096. https://doi.org/10.1371/journal.pone.0177096. |
[43] | Yang Y, Liu Y, Huang C F, et al.Aluminium alleviates fluoride toxicity in tea (Camellia sinensis)[J]. Plant & Soil, 2016, 402(1/2): 179-190. |
[44] | Xie Z L, Chen Z, et al.Distribution of aluminum and fluoride in tea plant and soil of tea garden in central and southwest China[J]. Chinese Geographical Science, 2007, 17(4): 376-382. |
[45] | Takmaz-Nisancioglu S, Davison A W.Effects of aluminium on fluoride uptake by plants[J]. New Phytologist, 1988, 109(2): 149-155. |
[46] | Xie Z M, Ye Z H, Wong M H.Distribution characteristics of fluoride and aluminum in soil profiles of an abandoned tea plantation and their uptake by six woody species[J]. Environment International, 2001, 26(5): 341-346. |
[47] | Kobayashi T, Nishizawa N K.Iron uptake, translocation, and regulation in higher plants[J]. Ann. rev. plant Biol, 2012, 63(1): 131-152. |
[48] | 张磊. 茶树氟吸收动力学特性的研究[D]. 北京: 中国农业科学院, 2008. |
[49] | 吴卫红, 谢正苗, 徐建明, 等. 不同土壤中氟赋存形态特征及其影响因素[J]. 环境科学, 2002, 23(2): 104-108. |
[50] | Ruan J, Lifeng M A, Shi Y, et al.The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis L.)[J]. Annals of Botany, 2004, 93(1): 97-105. |
[51] | Calvo-Polanco M, Zwiazek J J, Jones M D, et al.Effects of NaCl on responses of ectomycorrhizal black spruce (Picea mariana), white spruce (Picea glauca) and jack pine (Pinus banksiana) to fluoride[J]. Physiologia Plantarum, 2009, 135(1): 51-61. |
[52] | 马立锋, 阮建云, 石元值, 等. 钙[Ca(NO3)2和CaO]对茶树氟吸收的影响[J]. 土壤通报, 2005, 36(1): 85-87. |
[53] | Zhang X C, Gao H J, Yang T Y, et al. Anion channel inhibitor NPPB-inhibited fluoride accumulation in tea plant (Camellia sinensis) is related to the regulation of Ca2+, CaM and depolarization of plasma membrane potential [J]. International Journal of Molecular Sciences, 2016, 17(1): 57. https://doi.org/10.3390/ijms17010057. |
[54] | Santi S, Locci G, Monte R, et al.Induction of nitrate uptake in maize roots: expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms[J]. Journal of Experimental Botany, 2003, 54(389): 1851-1864. |
[55] | Chang C, Hu Y, Sun S, et al.Proton pump OsA8 is linked to phosphorus uptake and translocation in rice[J]. Journal of Experimental Botany, 2009, 60(2): 557-565. |
[56] | 王玉梅. 茶树根系跨膜吸收氟的微观机制和转录组学特征[D]. 合肥: 安徽农业大学, 2017. |
[57] | Facanha A R, De Meis L.Inhibition of maize root H+-ATPase by fluoride and fluoroaluminate complexes[J]. Plant Physiology, 1995, 108(1): 241-246. |
[58] | Pedersen J T, Falhof J, Ekberg K, et al.Metal fluoride inhibition of a P-type H+ Pump: Stabilization of the phosphoenzyme intermediate contributes to post-translational pump activation[J]. Journal of Biological Chemistry, 2015, 290(33): 20396-20406. |
[59] | Han N, Ji X L, Du Y P, et. al. Identification of a novel alternative splicing variant of VvPMA1 in grape root under salinity[J]. Frontiers in Plant Science, 2017, 8: 1-10. |
[60] | 刘艳丽, 金孝芳, 曹丹, 等. 茶树铝、氟富集研究进展[J]. 植物科学学报, 2016, 34(6): 972-977. |
[61] | 张永利, 王烨军, 廖万有, 等. 施氮对茶园土壤氟和茶树新梢氟含量的影响[J]. 中国生态农业学报, 2015, 23(12): 1562-1570. |
[62] | Gao H J, Zhang Z Z, Wan X C.Influences of charcoal and bamboo charcoal amendment on soil-fluoride fractions and bioaccumulation of fluoride in tea plants[J]. Environmental Geochemistry and Health, 2012, 34(5): 551-562. |
[1] | 徐文鸾, 温晓菊, 贾雨轩, 倪德江, 王明乐, 陈玉琼. 茶树果胶甲酯酶及其抑制子家族基因的鉴定及CsPME55参与氟胁迫响应的功能分析[J]. 茶叶科学, 2024, 44(6): 869-886. |
[2] | 刘昱, 杨培迪, 张培凯, 詹文礼, 李游, 姚苏航, 赵洋, 成杨, 刘振, 沈程文. 不同茶树品种叶片细胞壁氟富集差异探究[J]. 茶叶科学, 2024, 44(5): 735-746. |
[3] | 徐长霞, 罗宗秀, 马龙. 溴虫氟苯双酰胺影响灰茶尺蠖成虫合成与识别性信息素的能力[J]. 茶叶科学, 2024, 44(4): 618-626. |
[4] | 杜茜雅, 刘馨秋, 卢勇. 长江流域茶叶产地历史变迁及其影响因素[J]. 茶叶科学, 2024, 44(4): 694-706. |
[5] | 宋博, 贾培凝, 叶文祺, 吴俊, 孙威江, 薛志慧. 氟处理下茶树根系的组织细胞形态差异及蜡质合成相关基因WSD1的表达分析[J]. 茶叶科学, 2024, 44(2): 219-230. |
[6] | 李庆会, 李睿, 温晓菊, 倪德江, 王明乐, 陈玉琼. 氟胁迫条件下茶树叶部实时荧光定量PCR分析中内参基因的筛选与验证[J]. 茶叶科学, 2024, 44(1): 27-36. |
[7] | 邹佳婷, 郭宇航, 边磊, 罗宗秀, 李兆群, 修春丽, 付楠霞, 蔡晓明. 化学农药对茶小绿叶蝉成虫的防效及其原因探究[J]. 茶叶科学, 2023, 43(4): 544-552. |
[8] | 邢安琪, 武子辰, 徐晓寒, 孙怡, 王艮梅, 王玉花. 茶树富集氟的特点及其机制的研究进展[J]. 茶叶科学, 2022, 42(3): 301-315. |
[9] | 苏丹, 张豪杰, 温晓菊, 张伟, 余志, 倪德江, 陈玉琼. 一种黑茶不同提取物中氟生物有效性研究[J]. 茶叶科学, 2021, 41(6): 843-853. |
[10] | 郑蓉蓉, 刘路星, 马妍丽, 王自帅, 陈少游, 何敦春, 谢联辉. 基于Logistic-ISM模型的茶农采纳病虫生态调控技术的影响因素及层次结构分析[J]. 茶叶科学, 2020, 40(5): 696-706. |
[11] | 余文权, 王峰, 陈玉真, 单睿阳, 尤志明, 臧春荣, 陈常颂. 福建省典型茶园土壤硒含量及其影响因素研究[J]. 茶叶科学, 2020, 40(2): 173-185. |
[12] | 钟秋生, 林郑和, 郝志龙, 陈常颂, 陈志辉, 游小妹, 单睿阳. 氟铝互作对茶树叶片叶绿素荧光特性的影响[J]. 茶叶科学, 2019, 39(5): 537-546. |
[13] | 林梦星, 陈富桥, 杜佩, 姜爱芹, 姜仁华. 茶叶企业电子商务经营效率及其影响因素分析[J]. 茶叶科学, 2018, 38(5): 461-468. |
[14] | 刘思怡, 朱晓静, 房峰祥, 张豪杰, 邱安东, 陈玉琼. 茶树叶片氟亚细胞分布及其与细胞壁结合特性的研究[J]. 茶叶科学, 2018, 38(3): 305-312. |
[15] | 胡林英, 杜佩, 陈富桥, 姜爱芹, 姜仁华, 鲁成银. 茶农绿色防控技术采用行为影响因素实证研究[J]. 茶叶科学, 2017, 37(3): 308-314. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|