| [1] | 岳川, 曹红利, 郝心愿, 等. 茶树CsASR基因的克隆及其表达分析[J]. 茶叶科学, 2017, 37(4): 399-410. | 
																													
																						| [2] | Liu S, Liu S, Wang M, et al.A wheat SIMILAR TO RCD-ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity[J]. The Plant Cell, 2014, 26(1): 164-180. | 
																													
																						| [3] | You J, Zong W, Du H, et al.A special member of the rice SRO family, OsSRO1c, mediates responses to multiple abiotic stresses through interaction with various transcription factors[J]. Plant Molecular Biology, 2014, 84(6): 693-705. | 
																													
																						| [4] | 吕有军, 杨卫军, 赵兰杰, 等. 陆地棉SRO基因家族的鉴定及表达分析[J]. 作物学报, 2017, 43(10): 1468-1479. | 
																													
																						| [5] | 赵秋芳, 马海洋, 贾利强, 等. 玉米SRO基因家族的鉴定及表达分析[J]. 中国农业科学, 2018, 51(15): 196-206. | 
																													
																						| [6] | Jaspers P, Overmyer K, Wrzaczek M, et al.The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants[J]. BMC Genomics, 2010, 11: 170. DOI: 10.1186/1471-2164-11-170. | 
																													
																						| [7] | Katiyar-Agarwal S, Zhu J, Kim K, et al.The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2007, 103(49): 18816-18821. | 
																													
																						| [8] | Ahlfors R, Overmyer K, Jaspers P, et al.Arabidopsis radical-induced cell death 1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene and methyl jasmonate responses[J]. Plant Cell, 2004, 16(7): 1925-1937. | 
																													
																						| [9] | Vainonen J P, Jaspers P, Wrzaczek M, et al.RCD1-DREB2A interaction in leaf senescence and stress responses in Arabidopsis thaliana[J]. Biochemical Journal, 2012, 442(3): 573-581. | 
																													
																						| [10] | Teotia S, Lamb RS.The paralogous genes RADICAL-INDUCED CELL DEATH and SIMILAR TO RCD ONE1 have partially redundant functions during Arabidopsis development[J]. Plant Physiology, 2009, 151(1): 180-198. | 
																													
																						| [11] | Jaspers P, Blomster T, Brosche M, et al.Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors[J]. The Plant Journal, 2009, 60(2): 268-279. | 
																													
																						| [12] | Zhao X, Gao L, Jin P, et al.The similar to RCD-one 1 protein SRO1 interacts with GPX3 and functions in plant tolerance of mercury stress[J]. Bioscience Biotechnology and Biochemistry, 2017, 82(1): 1-7. | 
																													
																						| [13] | Babajani G, Effendy J, Plant AL.Sl-SROl1 increases salt tolerance and is a member of the radical-induced cell death 1—similar to RCD1 gene family of tomato[J]. Plant Science, 2009, 176(2): 214-222. | 
																													
																						| [14] | 李保珠, 赵翔, 赵孝亮, 等. 拟南芥SRO蛋白家族的结构及功能分析[J]. 遗传, 2013, 35(10): 1189-1197. | 
																													
																						| [15] | Li H, Li R, Qu F, et al.Identification of the SRO gene family in apples (Malus×domestica) with a functional characterization of MdRCD1[J]. Tree Genetics & Genomes, 2017, 13(5): 94. DOI: 10.1007/s11295-018-1242-4. | 
																													
																						| [16] | You J, Zong W, Li X, et al.The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice[J]. Journal of Experimental Botany, 2013, 64(2): 569-583. | 
																													
																						| [17] | Wang W, Xin H, Wang M, et al.Transcriptomic analysis reveals the molecular mechanisms of drought-stress-induced decreases in Camellia sinensis leaf quality[J]. Frontiers in Plant Science, 2016, 7: 385. DOI: 10.3389/fpls.2016.00385. | 
																													
																						| [18] | Zhou Y, Liu Y, Wang S, et al.Molecular cloning and characterization of galactinol synthases in Camellia sinensis with different responses to biotic and abiotic stressors[J]. Journal of Agricultural and Food Chemistry, 2017, 65(13): 2751-2759. | 
																													
																						| [19] | Hou Y, Wu A, He Y, et al.Genome-wide characterization of the basic leucine zipper transcription factors in Camellia sinensis[J]. Tree Genetics & Genomes, 2018, 14(2): 27. DOI: 10.1007/s11295-018-1242-4. | 
																													
																						| [20] | Liu L, Li Y, She G, et al.Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading[J]. BMC Plant Biology, 2018, 18(1): 233. DOI: 10.1186/s12870-018-1440-0. | 
																													
																						| [21] | Zhang Q, Cai M, Yu X, et al.Transcriptome dynamics of Camellia sinensis in response to continuous salinity and drought stress[J]. Tree Genetics & Genomes, 2017, 13(4): 1-17. | 
																													
																						| [22] | Wei C, Yang H, Wang S, et al.Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proceedings of the National Academy of Sciences, 2018, 115(18): 4151-4158. | 
																													
																						| [23] | Xia EH, Zhang HB, Sheng J, et al.The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Mol Plant, 2017, 10(6): 866-877. | 
																													
																						| [24] | Bailey TL, Boden M, Buske FA, et al.MEME SUITE: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37: 202-208. | 
																													
																						| [25] | Hu B, Jin J, Guo A, et al.GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297. | 
																													
																						| [26] | Hall B G.Building phylogenetic trees from molecular data with MEGA[J]. Molecular Biology and Evolution, 2013, 30(5): 1229-1235. | 
																													
																						| [27] | Lescot M.PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1): 325-327. | 
																													
																						| [28] | Trapnell C, Roberts A, Goff L, et al.Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nature Protocols, 2012, 7(3): 562-578. | 
																													
																						| [29] | Anders S, Pyl P T, Huber W.HTSeq—a Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 2015, 31(2): 166-169. | 
																													
																						| [30] | Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4): 402-408. | 
																													
																						| [31] | 魏瑞敏, 郑井元, 刘峰, 等. 辣椒bZIP家族基因的鉴定与表达分析[J]. 园艺学报, 2018, 45(8): 1535-1550. | 
																													
																						| [32] | Wang YX, Liu ZW, Wu ZJ, et al.Genome-wide identification and expression analysis of GRAS family transcription factors in tea plant (Camellia sinensis)[J]. Scientific Reports, 2018, 8(1): 3949. DOI: 10.1038/s41598-018-22275-z. | 
																													
																						| [33] | Xu G, Guo C, Shan H, et al.Divergence of duplicate genes in exon-intron structure[J]. Proceedings of the National Academy of Sciences, 2012, 109(4): 1187-1192. | 
																													
																						| [34] | 岳川, 曹红利, 王赞, 等. 茶树水通道蛋白基因的克隆与表达分析[J]. 西北植物学报, 2018, 38(8): 1419-1427. |