茶叶科学 ›› 2017, Vol. 37 ›› Issue (2): 119-129.
• • 下一篇
祁洁1, 徐颖磊1, 梁文怡1, 费朵1, 乌昕儿1, 金建昌2, 杜琪珍1,*, 许勇泉3, 高颖3
收稿日期:
2016-08-16
修回日期:
2016-10-13
出版日期:
2017-04-15
发布日期:
2019-08-22
通讯作者:
*qizhendu@163.com
作者简介:
祁洁,女,本科生,国家大学生创新项目主持人。
基金资助:
QI Jie1, XU Yinglei1, LIANG Wenyi1, FEI Duo1, WU Xiner1, JIN Jianchang2, DU Qizhen1,*, XU Yongquan3, GAO Ying3
Received:
2016-08-16
Revised:
2016-10-13
Online:
2017-04-15
Published:
2019-08-22
摘要: 表没食子儿茶素没食子酸酯(EGCG)是绿茶中最重要的生物活性成分,在肿瘤形成的各个阶段都有抑癌活性。纳米化途径是提高EGCG稳定性和生物利用度的有效技术之一。已有较多的研究表明,多类材料可用于制备纳米粒子作为EGCG载体,并在改善EGCG生物活性方面效果显著。本文按制备纳米粒子主要材料的不同,对各类纳米粒子的制备方法、特性及其在改善EGCG的生物活性方面的研究进行了分述,并对各种纳米粒的增效作用进行了归纳总结。
中图分类号:
祁洁, 徐颖磊, 梁文怡, 费朵, 乌昕儿, 金建昌, 杜琪珍, 许勇泉, 高颖. EGCG纳米载体制备技术及其对EGCG活性影响的研究进展[J]. 茶叶科学, 2017, 37(2): 119-129.
QI Jie, XU Yinglei, LIANG Wenyi, FEI Duo, WU Xiner, JIN Jianchang, DU Qizhen, XU Yongquan, GAO Ying. Progress on the Preparation Technologies and the Active Improvement of EGCG Nano-carriers[J]. Journal of Tea Science, 2017, 37(2): 119-129.
[1] | Nagle D G, Ferreira D, Zhou Y D.Epigallocateehin·3-gallate (EGCG): Chemical and biomedical perspectives[J]. Phytochemistry, 2006, 67: 1849-1855. |
[2] | Yang C S, Wang X, Lu G, et al.Cancer prevention by tea: animal studies, molecular mechanisms and human relevance[J]. Nature Review Cancer, 2009, 9: 429-439. |
[3] | Moyers S B, Kumar N B.Green tea polyphenols and cancer chemoprevention: multiple mechanisms and endpoints for phase 11 trials[J]. Nuture Review, 2004, 62: 204-211. |
[4] | Yang C S, Landau J M, Huang M T, et al.Inhibition of carcinogenesis by dietary polyphenolic compounds[J]. Annual Review Nutrition, 200l, 21: 381-406. |
[5] | Bettuzzi S, Brausi M, Rizzi F, et al.Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study[J]. European Urology Supplements, 2006, 66(2): 1234-1240. |
[6] | Krook M A, Hagerman A E.Stability of polyphenols epigallocatechin gallate and pentagalloyl glucose in a simulated digestive system[J]. Food Research International, 2012, 49(1): 112-116. |
[7] | Li N, Taylor L S, Ferruzzi M G, et al.Kinetic study of catechin stability: Effects of pH, concentration, and temperature[J]. Journal of Agricultural and Food Chemistry, 2012, 60: 12531-12539. |
[8] | Lambert J D, Lee M J, Diamond L, et al.Dose-dependent levels of epigallocatechin-3-gallate in human colon cancer cells and mouse plasma and tissues[J]. Drug Metabolism and Disposition, 2006, 34(1): 8-11. |
[9] | Mitragotri S, Lahann J.Physical approaches to biomaterial design[J]. Nature Materials, 2009, 8(1): 15-23. |
[10] | Jiang W, Kim B Y S, Rutka J T, et al. Nanoparticle mediated cellular response is size-dependent[J]. Nature Nanotechnology, 2008, 3(3): 145-150. |
[11] | Elgogary A, Xu Q, Poore B, et al.Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 24: E5328-E5336. |
[12] | Barbara H, Eugune M D, Frenkel M D.Nanoparticles for drug delivery in cancer treatment[J]. Urologic Oncology, 2008, 26: 57-64. |
[13] | 魏建红, 官建国, 袁润章. 金属纳米粒子的制备与应用[J]. 武汉理工大学学报, 2001, 23(3): 1-4. |
[14] | 李宇农, 何建军, 龙小兵. 金属纳米粒子研究进展[J]. 稀有金属与硬质合金, 2003, 31(4): 45-50. |
[15] | Hsieh D S, Wang H, Tan S W, et al.The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles[J]. Biomaterials, 2011, 32: 7633-7640. |
[16] | Shukla R, Chanda N, Zambre A, et al.Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(31): 12426-12431. |
[17] | Hussain S, Khan Z.Epigallocatechin-3-gallate-capped Ag nanoparticles: preparation and characterization[J]. Bioprocess and Biosystems Engineering, 2014, 37: 1221-1231. |
[18] | Sudeshna M, Ghosh S, Dipesh D, et al.Gold-conjugated green tea nanoparticles for enhanced anti-tumor activities and hepatoprotection synthesis, characterization and in vitro evaluation[J]. Journal of Nutritional Biochemistry, 2015, 26: 1283-1297. |
[19] | Nagabhushana H, Basavaraj R B, Daruka B, et al.Facile EGCG assisted green synthesis of raspberry shaped CdO nanoparticles[J]. Journal of Alloys and Compounds, 2016, 669: 232-239. |
[20] | 祖元刚, 袁帅, 赵修华, 等. 叶酸介导表没食子儿茶素没食子酸白蛋白纳米粒的制备及其体外靶向性与活性评价[J]. 药学学报, 2009, 44(5): 525-531. |
[21] | Shpigelman A, Israeli G, Livney Y D.Thermally-induced protein-polyphenol co-assemblies: beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG[J]. Food Hydrocolloids, 2010, 24: 735-743. |
[22] | Shpigelman A, Yifat C, Yoav L.Thermally-induced β-lactoglobulin-EGCG nanovehicles: Loading, stability[J]. Food Hydrocolloids, 2012, 29(1): 57-67. |
[23] | Li B, Du W, Jin J, et al.Preservation of (-)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles[J]. Journal of Agricultural and Food Chemistry, 2012, 60: 3477-3484. |
[24] | Chung J E, Tan S, Gao S J, et al.Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy[J]. Nature Nanotechnology, 2014, 9(11): 907-912. |
[25] | 黄美蓉, 应浩, 杜琪珍, 等. EGCG纳米粒的制备及其抗肿瘤活性研究[J]. 茶叶科学, 2015, 35(6): 605-612. |
[26] | Yang R, Sun G, Zhang M, et al.Epigallocatechin gallate (EGCG) decorating soybean seed ferritin as a rutin nanocarrier with prolonged release property in the gastrointestinal tract[J]. Plant Foods Human Nutrition, 2016, 71: 277-285. |
[27] | Huang M, Khor E, Lim LY.Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree on deacetylation[J]. Pharmaceutical Research, 2004, 21: 344-353. |
[28] | Janes KA, Fresneau MP, Marazuela A, et al.Chitosan nanoparticles as delivery syeterm for doxorubicin[J]. Journal of Controlled Release, 2001, 73: 255-257. |
[29] | 胡冰, 周蓓, 孙怡, 等. 芯-壳复合纳米颗粒及其纳米营养物制备技术的研究: I. 儿茶素纳米胶囊的研制[J]. 湖南农业大学学报:自然科学版, 2007, 33(3): 353-357. |
[30] | Gomes J F P S, Rocha S, Pereira M D C, et al. Lipid/particle assemblies based on maltodextrin-gum arabic core as bio-carriers[J]. Colloids and Surfaces B Biointerfaces, 2010, 76: 449-455. |
[31] | Dube A, Nicolazzo J A, Larson I.Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (-)-epigallocatechin gallate[J]. European Journal of Pharmaceutical Sciences, 2010, 41(2): 219-225. |
[32] | Dube A, Nicolazzo J A, Larson I.Chitosan nanoparticles enhance the plasma exposure of (À)-epigallocatechin gallate in mice through an enhancement in intestinal stability[J]. European Journal of Pharmaceutical Sciences, 2011, 44(3): 422-426. |
[33] | Peres I, Rocha S, Gomes J, et al.Preservation of catechin antioxidant properties loaded in carbohydrate nanoparticles[J]. Carbohydrate Polymers, 2011, 86(1): 147-153. |
[34] | Liang K, Bae K H, Fan L, et al.Self-assembled ternary complexes stabilized with hyaluronic acid-green tea catechin conjugates for targeted gene delivery[J]. Journal of Controlled Release, 2016, 226(5): 205-216. |
[35] | Tang D W, Yu S H, Ho Y C, et al.Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide[J]. Food Hydrocolloids, 2013, 30(1): 33-41. |
[36] | Liang J, Cao L, Zhang L, et al.Preparation, characterization, and in vitro antitumor activity of folate conjugated chitosan coated EGCG nanoparticles[J]. Food Science & Biotechnology, 2014, 23(2): 569-575. |
[37] | Lin Y H, Feng C L, Lai C H, et al.Preparation of epigallocatechin gallate-loaded nanoparticles and characterization of their inhibitory effects on helicobacter pylori growth in vitro and in vivo[J]. Science and Technology of Advanced Materials, 2014, 15(4): 49-54. |
[38] | Siddiqui I A, Bharali D J, Nihal M, et al.Excellent anti-proliferative and pro-apoptotic effects of (-)-epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2014, 10(8): 1619-1626. |
[39] | Hong Z, Xu Y, Yin J F, et al.Improving the effectiveness of (-)-epigallocatechin gallate (EGCG) against rabbit atherosclerosis by EGCG-loaded nanoparticles prepared from chitosan and polyaspartic acid[J]. Journal of Agricultural and Food Chemistry, 2014, 62(52): 12603-12609. |
[40] | Zou L, Peng S, Liu W, et al.A novel delivery system dextran sulfate coated amphiphilic chitosan derivatives-based nanoliposome: Capacity to improve in vitro digestion stability of(-)-epigallocatechin gallate[J]. Food Research International, 2015, 69(1): 114-120. |
[41] | 孙静, 张小飞, 唐志书, 等. 表没食子儿茶素没食子酸酯壳聚糖纳米粒的制备及其药剂学性质研究[J]. 中草药, 2016, 47(5): 741-747. |
[42] | Park S J, Garcia C V, Shin G H, et al.Fabrication and optimization of EGCG-loaded nanoparticles by high pressure homogenization[J]. Journal of Applied Polymer Science, 2016, 133(14): 43269-43276. |
[43] | 闫敬娜, 罗理勇, 胡雅琼, 等. 茶提取物和纳米表没食子儿茶素没食子酸醋对6-经基多巴胺诱导的SH-SYSY细胞保护作用[J]. 食品科学, 2016, 37: 163-170. |
[44] | Kabanov A V, Batrakova E V, Alakhov V Y.An essential relationship between ATP depletion and chemosensitizing activity of Pluronic block copolymers[J]. Journal of Controlled Release, 2003, 91(1/2): 75-83. |
[45] | Siddiqui I A, Adhami V M, Bharali D J, et al.Introducing nanochemo-prevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate[J]. Cancer Res, 2009, 69(5): 1712-1716. |
[46] | Srivastava A K, Bhatnagar P, M Singh, et al. Synthesis of PLGA nanoparticles of tea polyphenols and their strong in vivo protective effect against chemically induced DNA damage[J]. International Journal of Nonamedicine, 2013, 8: 1451-1463. |
[47] | Shin Y C, Yang W J, Lee J H, et al.PLGA nanofiber membranes loaded with epigallocatechin-3-O-gallate are beneficial to prevention of postsurgical adhesions[J]. International Journal of Nanomedicine, 2014, 9: 4068-4078. |
[48] | Pal S, Saha C.Preparation and physicochemical characterization of poly (D,L-lactide-co-glycolide) nanoparticles for controlled release of EGCG[J]. International Journal of Science and Research, 2015, 4(6): 862-865. |
[49] | Singh M, Bhatnagar P, Mishra S, et al.PLGA-encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin against human cancer cells and mice bearing Ehrlich ascites carcinoma[J]. International Journal of Nanomedicine, 2014, 10: 6789-6809. |
[50] | Narayanan S, Pavithran M, Viswanath A, et al.Sequentially releasing dual-drug-loaded PLGA-casein core/shell nanomedicine: Design, synthesis, biocompatibility and pharmacokinetics[J]. Acta Biomaterialia, 2014, 10(5): 2112-2124. |
[51] | Narayanan S, Mony U, Koyakutty M, et al.Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2015, 11(6): 1399-1406. |
[52] | 许时婴, 张晓鸥, 夏书芹, 等. 微胶囊技术—原理与应用[M]. 北京: 化学工业出版社, 2006. |
[53] | Fang Z, Bhandari B, Encapsulation of polyphenols-a review[J]. Trends in Food Science & Technology, 2010, 21(10): 510-523. |
[54] | Fang J Y, Lee W R, Shen S C, et al.Effect of liposome encapsulation of tea catechins on their accumulation in basal cell carcinomas[J]. Journal of Dermatological Science, 2006, 42(2): 101-109. |
[55] | 潘桂玲, 刘颖, 陈祥峰. 表棓儿茶素棓酸酯脂质纳米粒制备及含量测定[J]. 药学与临床研究, 2007, 15: 429-432. |
[56] | Barras A, Mezzetti A, Richard A, et al.Formulation and characterization of polyphenol-loaded lipid nanocapsules[J]. International Journal of Pharmaceutics, 2009, 379(2): 270-277. |
[57] | Smith A, Giunta B, Bickford P C, et al.Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease[J]. International Journal of Pharmaceutics, 2010, 389(2): 207-212. |
[58] | Zhang J, Nie S, Wang S.Nanoencapsulation enhances epigallocatechin-3-gallate stability and its antiatherogenic bioactivities in macrophages[J]. Journal of Agricultural and Food Chemistry, 2013, 61(38): 9200-9209. |
[59] | Zhang J, Nie S, Martinez-Zaguilan R, et al.Formulation, characteristics and antiatherogenic bioactivities of CD36-targeted epigallocatechin gallate (EGCG)-loaded nanoparticles[J]. Journal of Nutritional Biochemistry, 2015, 30: 14-23. |
[60] | Gülseren İ, Guri A, Corredig M.Encapsulation of tea polyphenols in nanoliposomes prepared with milk phospholipids and their effect on the viability of HT-29 human carcinoma cells[J]. Food Digestion, 2012, 3: 36-45. |
[61] | Rashidinejad A, Birch E J. Sun-Waterhouse D, et al.Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese[J]. Food Chemistry, 2014, 156(156): 176-183. |
[62] | Luo X, Guan R, Chen X, et al.Optimization on condition of epigallocatechin-3-gallate (EGCG) nanoliposomes by response surface methodology and cellular uptake studies in Caco-2 cells[J]. Nanoscale Research Letters, 2014, 9(1): 1-9. |
[63] | Zou L, Peng S, Liu W, et al.Improved in vitro digestion stability of (-)-epigallocatechin gallate through nanoliposome encapsulation[J]. Food Research International, 2014, 64: 492-499. |
[64] | 贾坤, 李锐, 张全. 薄膜超声法制备姜黄素-EGCG固体脂质纳米粒及其体外抗肿瘤活性的研究[J]. 华西药学杂志, 2015, 30(5): 549-552. |
[65] | Zou L, Peng S, Liu W, et al.A novel delivery system dextran sulfate coated amphiphilic chitosan derivatives-based nanoliposome: Capacity to improve in vitro digestion stability of (-)-epigallocatechin gallate[J]. Food Research International, 2015, 69(1): 114-120. |
[66] | Radhakrishnan R, Kulhari H, Pooja D, et al.Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer[J]. Chemistry and Physics of Lipids, 2016, 198: 51-60. |
[67] | Liao B, Ying H, Yu C, et al.(-)-Epigallocatechin gallate (EGCG)-nanoethosomes as a transdermal delivery system for docetaxel to treat implanted human melanoma cell tumors in mice[J]. International Journal of Pharmaceutics, 2016, 512(1): 22-31. |
[1] | 徐晴晴, 聂晴, 刘助生, 郭青, 刘仲华, 蔡淑娴. 康普茶细菌纤维素的形成途径及其在废弃茶叶资源高效利用中的应用[J]. 茶叶科学, 2024, 44(5): 707-717. |
[2] | 王宇安, 杜文凯, 万景红, 解东超, 张海华, 金鹏, 杜琪珍. 香榧油复合EGCG纳米乳液制备及其对沙拉酱和月饼的品质影响[J]. 茶叶科学, 2024, 44(2): 269-282. |
[3] | 徐伟, 俞蓉欣, 张相春, 张以稳, 陈红平, 田宝明, 郑芹芹, 吴媛媛, 夏琛, 韦兵. 多酚自组装抗菌生物材料的构建及其应用进展[J]. 茶叶科学, 2024, 44(1): 1-15. |
[4] | 万丽玮, 曾鸿哲, 彭丽媛, 文帅, 刘昌伟, 鲍肃都, 安勤, 黄建安, 刘仲华. EGCG对高脂饮食GK大鼠白色脂肪米色化的诱导作用与机制研究[J]. 茶叶科学, 2024, 44(1): 119-132. |
[5] | 彭丽媛, 曾鸿哲, 万丽玮, 文帅, 刘昌伟, 安勤, 鲍肃都, 黄建安, 刘仲华. EGCG对非肥胖型糖尿病大鼠肾损伤的改善作用及调节机制研究[J]. 茶叶科学, 2023, 43(6): 784-794. |
[6] | 盛政, 杜文凯, 王崇崇, 张博安, 张海华, 杜琪珍. 茶多酚对茶食品中还原糖检测方法的影响[J]. 茶叶科学, 2023, 43(4): 567-575. |
[7] | 周晶辉, 刘昌伟, 张盛, 许岗, 胥伟, 黄建安, 刘仲华. 一种基于儿茶素的多酚氧化酶交联聚集体制备及其高效催化合成茶黄素-3,3ʹ-双没食子酸酯研究[J]. 茶叶科学, 2023, 43(3): 377-388. |
[8] | 陈珂, 王苑竹, 杨晓颖, 张冬英, 朱强强. 壳聚糖复合β-乳球蛋白负载EGCG纳米粒的制备及其对糖尿病小鼠血糖的影响[J]. 茶叶科学, 2022, 42(5): 731-739. |
[9] | 俞蓉欣, 郑芹芹, 陈红平, 张劲松, 张相春. 儿茶素生物医用纳米材料研究进展[J]. 茶叶科学, 2022, 42(4): 447-462. |
[10] | 张旖旎, 吉铮. 表没食子儿茶素没食子酸酯(EGCG)研究的文献计量分析[J]. 茶叶科学, 2022, 42(3): 423-434. |
[11] | 苏丹, 张豪杰, 温晓菊, 张伟, 余志, 倪德江, 陈玉琼. 一种黑茶不同提取物中氟生物有效性研究[J]. 茶叶科学, 2021, 41(6): 843-853. |
[12] | 陈春晓, 楼文雨, 丁镇建, 李卓烨, 杨媛媛, 金鹏, 杜琪珍. 伐地那非增加EGCG-β-乳球蛋白纳米粒对肝癌细胞的抑制作用[J]. 茶叶科学, 2020, 40(4): 528-535. |
[13] | 张建勇, 陈琳, 崔宏春, 王伟伟, 薛金金, 熊春华, 江和源. PBD和RSM联用优化聚酯型儿茶素A化学合成技术参数[J]. 茶叶科学, 2020, 40(1): 51-62. |
[14] | 范延艮, 赵秀秀, 王翰悦, 田月月, 向勤锃, 张丽霞. 黄金芽不同色泽叶片生理特性研究[J]. 茶叶科学, 2019, 39(5): 530-536. |
[15] | 罗源, 李适, 黄建安, 肖力争, 欧行畅, 安慧敏. 湖南黑茶感官审评茶汤制备方法研究[J]. 茶叶科学, 2019, 39(3): 289-296. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|