[1] |
Fischer K, Kammerer B, Gutensohn M, et al.A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter[J]. Plant Cell, 1997, 9: 453-462.
|
[2] |
Voll L, Husler R E, Hecker R, et al.The phenotype of the Arabidopsis cue1 mutant is not simply caused by a general restriction of the shikimate pathway[J]. Plant Journal, 2003, 36: 301-317.
|
[3] |
Kerbarh O, Bulloch E M M, Payne R J, et al. Mechanistic and inhibition studies of chorismate-utilizing enzymes[J]. Biochemical Society Transactions, 2005, 33: 763-766.
|
[4] |
Li H, Culligan K, Dixon RA, et al.Expression of the functional mature chloroplast triose phosphate translocator in yeast internal membranes and purification of the histidine-tagged proteion by a single metalaffinity chromatography step[J]. Proc Natl Acad Sci, 1993, 90: 2155-2159.
|
[5] |
Streatfield SJ, Weber A, Kinsman EA, et al.The phosphoenolpyruvate/phosphater translocator is required for phenolic metabolism, plastid cell development and plastid-dependent nuclear gene expression[J]. Plant Cell, 1999, 11: 1609-1621.
|
[6] |
Knappe S, Flugge UI, Fischer K.Analysis of the plastidic phosphate translocator gene family in Arabidopsis and identification of new phosphate translocator-homologous transporters, classified by their putative substrate-binding site[J]. 2003, 131(3): 1178-1190.
|
[7] |
Knappe S, Löttgert T, Schneider A, et al.Characterization of two functional phosphoenolpyruvate/phosphate translocator (PPT) genes in Arabidopsis-AtPPT1 may be involved in the provision of signals for correct mesophyll development[J]. The Plant Journal, 2003, 36(3): 411-420.
|
[8] |
Staehr P, Löttgert T, Christmann A, et al.Reticulate leaves and stunted roots are independent phenotypes pointing at opposite roles of the phosphoenolpyruvate/phosphate translocator defective in cue1 in the plastids of both organs[J]. Front Plant Sci, 2014, 5: 126.
|
[9] |
杨坤, 吴学龙, 郎春秀, 等. 甘蓝型油菜PEP转运子BnPPT1基因的克隆、序列分析和表达模式[J]. 浙江农业学报, 2011, 23(1): 1-7.
|
[10] |
吴学龙. PPT1基因调控植物生长发育的研究及叶脉特异表达增强子的分离应用[D]. 杭州: 浙江大学, 2013: 12-131.
|
[11] |
成浩, 李素芳, 陈明, 等. 安吉白茶特异性状的生理生化本质[J]. 茶叶科学, 1999, 19(2): 87-92.
|
[12] |
李素芳, 成浩, 虞富莲, 等. 安吉白茶阶段性返白过程中氨基酸的变化[J]. 茶叶科学, 1996, 16(2): 153-154.
|
[13] |
李素芳, 陈树尧, 成浩. 茶树阶段性返白现象的初步研究[J]. 中国茶叶, 1994, 16(2): 26-27.
|
[14] |
赵真, 陈暄, 王明乐, 等. 茶树磷酸烯醇式丙酮酸转运子基因CsPPT的克隆与表达分析[J]. 茶叶科学, 2015, 35(5): 491-500.
|
[15] |
孙美莲, 王云生, 杨冬青, 等. 茶树实时荧光定量PCR分析中内参基因的选择[J]. 植物学报, 2010, 45(5): 579-587.
|
[16] |
Bagge P, Larsson C.Biosynthesis of aromatic amino acids by highly purified spinach chloroplasts-Compartmentation and regulation of the reactions[J]. Physiol Plantarum, 1986, 68(4): 641-647.
|
[17] |
Van Der Straeten D, Rodrigues-Pousada RA, Goodman HM, et al. Plant enolase: Gene structure, expression and evolution[J]. Plant Cell, 1991, 3: 719-735.
|
[18] |
Journet EP, Douce R.Enzymic capacities of purified cauliflower bud plastids for lipidsynthesis and carbohydrate metabolism[J]. Plant Physiol, 1985, 79: 458-467.
|
[19] |
Schulze-Siebert D, Heineke D, Scharf H, et al.Pyruvate-derived amino acids in spinach chloroplasts: Synthesis and regulation during photosynthetic carbon metabolism[J]. Plant Physiol, 1984, 76: 465-471.
|
[20] |
Prabhaka V, Löttgert T, Gigolashvili T, et al.Molecular and functional characterization of the plastid-localized Phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana[J]. FEBSLet, 2009, 583: 983-991.
|
[21] |
Li HM, Culligan K, Dixon RA, et al.CUE1: a mesophyll cell-specific positive regulator of light-controlled gene expression in Arabidopsis[J]. Plant Cell, 1995, 7: 1599-1610.
|