欢迎访问《茶叶科学》,今天是

茶叶科学 ›› 2017, Vol. 37 ›› Issue (2): 182-190.

• • 上一篇    下一篇

基于图像处理技术和神经网络实现机采茶分级

吴正敏, 曹成茂*, 谢承健, 吴佳胜, 胡汪洋, 汪天宇   

  1. 安徽农业大学工学院,安徽 合肥 230036
  • 收稿日期:2016-12-30 修回日期:2017-02-26 出版日期:2017-04-15 发布日期:2019-08-22
  • 通讯作者: *caochengmao@sina.com
  • 作者简介:吴正敏,女,硕士,主要从事智能检测与控制技术研究。
  • 基金资助:
    科技部科技型中小企业技术创新基金项目(14C26213401694)

Grading of Machine Picked Tea Based on Image Processing Technology and Neural Network

WU Zhengmin, CAO Chengmao*, XIE Chengjian, WU Jiasheng, HU Wangyang, WANG Tianyu   

  1. College of Engineering, Anhui Agricultural University, Hefei 230036, China
  • Received:2016-12-30 Revised:2017-02-26 Online:2017-04-15 Published:2019-08-22

摘要: 为解决名优绿茶采摘环节的瓶颈问题,提出对机采大宗绿茶进行分级的思路。现有绿茶机采设备采摘的鲜叶一般只能制作普通的大宗绿茶,鲜叶存在混杂、破碎率高和老梗叶等问题,本文基于Labview vision、图像处理技术和神经网络算法分析机采绿茶成品的凸包面积、 凸包周长、长轴长度、短轴长度等形态特征并对样本进行分类,实现从机采大宗绿茶中分选出名优绿茶。其中样本的形态特征采用工业CCD摄像头获取;用户界面用Labview自定义开发设计,数据交互方便,开发周期短。茶叶样本试验结果表明:该方案机采绿茶成品的分级正确率可以稳定在90%以上。本研究为进一步研究机采茶分级设备提供了良好的理论基础。

关键词: 机采绿茶, 分级, 神经网络, 图像处理技术

Abstract: To solve the picking problem of famous green tea, a new technology was proposed to classify machine picked tea in this paper. Fresh tea leaves plucked by machine are often mixed, with tea stalks and have a high broken rate and thereby only suitable for making general green tea. The convex hull area, convex hull perimeter, long axial length, short axial length and other morphological features of machine plucked tea leaves were analyzed by Labview vision, image processing technology and neural network to screen high quality tea. Industrial CCD camera with appropriate optical system was used to collect object classification features. User interface was developed by Labview, which can realize the data interaction, convenient operation, short development cycle and meet different users’ requirements. Finally, sample test showed that the correct rate of tea classification could reach about 90%, which provides a good theoretical basis for further research of tea grading equipment.

Key words: machine plucked tea, grading, neural network, image processing technology

中图分类号: