[1] |
Chi Y, Yang Y, Zhou Y, et al.Protein-protein interactions in the regulation of WRKY transcription factors[J]. Mol Plant, 2013, 6(2): 287-300.
|
[2] |
Guo D, Zhang J, Wang X, et al.The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating RAX genes in Arabidopsis[J]. Plant Cell, 2015, 27(11): 3112-3127.
|
[3] |
Choi C, Hwang S H, Fang I R, et al.Molecular characterization of Oryza sativa WRKY6, which binds to W-box-like element 1 of the Oryza sativa pathogenesis-related (PR) 10a promoter and confers reduced susceptibility to pathogens[J]. New Phytologist, 2015, 208(3):846-859.
|
[4] |
Wang X, Guo R, Tu M, et al.Ectopic expression of the wild grape WRKY transcription Factor VqWRKY52 in Arabidopsis thaliana enhances resistance to the biotrophic pathogen powdery mildew but not to the necrotrophic pathogen Botrytis cinerea[J]. Frontiers in Plant Science, 2017, 8: 97.
|
[5] |
Wang H, Meng J, Peng X, et al.Rice WRKY4 acts as a transcriptional activator mediating defense responses toward Rhizoctonia solani, the causing agent of rice sheath blight[J]. Plant Molecular Biology, 2015, 89(1): 157-171.
|
[6] |
Raineri J, Wang S, Peleg Z, et al.The rice transcription factor OsWRKY47 is a positive regulator of the response to water deficit stress[J]. Plant Molecular Biology, 2015, 88(4): 401-413.
|
[7] |
He G H, Xu J Y, Wang Y X, et al.Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis[J]. BMC Plant Biology, 2016, 16(1): 116-131.
|
[8] |
Jaffar M A, Song A, Faheem M, et al.Involvement of CmWRKY10 in drought tolerance of chrysanthemum through the ABA-signaling pathway[J]. International Journal of Molecular Sciences, 2016, 17(5): 693-706.
|
[9] |
Jiang Y, Yu D.The WRKY57 transcription factor affects the expression of jasmonate ZIM-Domain genes transcriptionally to compromise Botrytis cinerea resistance[J]. Plant Physiology, 2016, 171(4): 2771-2782.
|
[10] |
Jiang Y, Liang G, Yang S, et al.Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence[J]. Plant Cell, 2014, 26(1): 230-245.
|
[11] |
Jiang Y, Liang G, Yu D.Activated expression of WRKY57 confers drought tolerance in Arabidopsis[J]. Mol Plant, 2012, 5(6):1375-1388.
|
[12] |
Jiang Y, Qiu Y, Hu Y, et al.Heterologous expression of AtWRKY57 confers drought tolerance in oryza sativa[J]. Frontiers in Plant Science, 2016, 7(145): 145.
|
[13] |
Wang Y, Shu Z, Wang W, et al.CsWRKY2, a novel WRKY, gene from Camellia sinensis, is involved in cold and drought stress responses[J]. Biologia Plantarum, 2016, 60(3): 443-451.
|
[14] |
杨桂燕, 贾彩霞, 孙宇栋, 等. 核桃JrsHSP17.3基因克隆及温度胁迫响应模式分析[J]. 西北植物学报, 2015, 35(9): 1752-1756.
|
[15] |
钱文俊, 岳川, 曹红利, 等. 茶树中性/碱性转化酶基因CsINV10的克隆与表达分析[J]. 作物学报, 2016(3): 376-388.
|
[16] |
Yamasaki K, Kigawa T, Seki M, et al.DNA-binding domains of plant-specific transcription factors: structure, function, and evolution[J]. Trends in Plant Science, 2013, 18(5): 267-76.
|
[17] |
Tang L, Cai H, Zhai H, et al.Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.)[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2014, 118(1): 77-86.
|
[18] |
Yan H, Jia H, Chen X, et al.The cotton WRKY transcription factor GhWRKY17 Functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signalling and the modulation of reactive oxygen species production[J]. Plant & Cell Physiology, 2014, 55(12): 2060-2076.
|
[19] |
Liu L, Zhang Z, Dong J, et al.Overexpression of MtWRKY76, increases both salt and drought tolerance in Medicago truncatula[J]. Environmental & Experimental Botany, 2016, 123: 50-58.
|
[20] |
Jiang Y Q, Deyholos M K.Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses[J]. Plant Molecular Biology, 2009, 69(1): 91-105.
|
[21] |
Ying Z, Yu H, Yang X, et al.CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner[J]. Plant Physiology & Biochemistry Ppb, 2016, 108: 478-487.
|
[22] |
Li P, Song A, Gao C, et al.The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance[J]. Plant Physiology & Biochemistry, 2015, 95: 26-34.
|
[23] |
Li P, Song A, Gao C, et al.Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants[J]. Plant Cell Reports, 2015, 34(8): 1365-1378.
|
[24] |
Zhou Q Y, Tian A G, Zou H F, et al.Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and, GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J]. Plant Biotechnol J, 2008, 6(5): 486-503.
|
[25] |
王涛. 青蒿AaGL2基因的克隆及转基因青蒿遗传分析[D]. 上海: 上海交通大学, 2012.
|