[1] 夏涛, 高丽萍. 类黄酮及茶儿茶素生物合成途径及其调控研究进展[J]. 中国农业科学, 2009, 42(8): 2899-2908. [2] Punyasiri P A N, Abeysinghe I S B, Kumar V, et al. Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways [J]. Archives of Biochemistry and Biophysics, 2004, 431(1): 22-30. [3] Liu Y J, Gao L P, Liu L, et al. Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant (Camellia sinensis)[J]. The Journal of Biological Chemistry, 2012, 287(53): 44406-44417. [4] 夏涛, 高丽萍, 刘亚军, 等. 茶树酯型儿茶素生物合成及水解途径研究进展[J]. 中国农业科学, 2013, 46(11): 2307-2320. [5] Zhao L, Gao L P, Wang H X, et al. The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis[J]. Functional & Integrative Genomics, 2013, 13(1): 75-98. [6] Jiang X, Liu Y, Li W, et al. Tissue-Specific, Development-Dependent Phenolic Compounds Accumulation Profile and Gene Expression Pattern in Tea Plant [Camellia sinensis][J]. PLoS ONE, 2013, 8(4): e62315. doi:10.1371/journal.pone.0062315. [7] Umar K M, Abdulkarim S M, Radu S, et al. Engineering the Production of Major Catechins by Escherichia coli Carrying Metabolite Genes of Camellia sinensis[J]. The scientific world journal, 2012. doi: 10.1100/2012/529031. [8] Rani A, Singh K, Ahuja P S, et al. Molecular regulation of catechins biosynthesis in tea [Camellia Sinensis (L.) O. Kuntze][J]. Gene, 2012, 495(2): 205-210. [9] Xiong L G, Li J, Li Y H, et al. Dynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis L.)[J]. Plant physiology and biochemistry, 2013, 71: 132-143. [10] Wang Y S, Gao L P, Shan Y, et al. Influence of shade on flavonoid biosynthesis in tea [Camellia sinensis (L.) O. Kuntze][J]. Scientia horticulturae, 2012, 141: 7-16. [11] 卢忠尉, 蒋晓岚, 刘亚军, 等. 固相萃取结合高效液相制备茶树没食子酸衍生物[J]. 茶叶科学, 2012, 32(6): 494-499. [12] Kato M, Mizuno K, Crozier A, et al. Caffeine synthase gene from tea leaves[J]. Nature, 2000, 406: 956-957. [13] Ashihara H, Sano H, Crozier A.Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering[J]. Phytochemistry, 2008, 69: 841-856. [14] 金璐. 茶树咖啡碱生物合成途径研究及其分子调控[D]. 合肥: 安徽农业大学, 2012. [15] 刘祥琦. 茶树咖啡碱合成途径中疑似N-甲基核苷水解酶的原核表达及活性验证[D]. 合肥: 安徽农业大学, 2013. [16] 金基强, 姚明哲, 马春雷, 等. 合成茶树咖啡碱相关的N-甲基转移酶基因家族的克隆及序列分析[J]. 茶叶科学, 2014,34(2): 188-194. [17] 魏艳丽. 茶树AMP脱氨酶基因的克隆及咖啡碱合成酶基因(TCS1)的cSNP分析[D]. 合肥: 安徽农业大学, 2013. [18] Mohanpuria P, Kumar V, Ahuja P S, et al. Producing low-caffeine tea through post-transcriptional silencing of caffeine synthase mRNA[J]. Plant Mol Biol, 2011, 76: 523-534. [19] Mohanpuria P, Kumar V, Ahuja P S, et al. Agrobacterium-mediated silencing of caffeine synthesis though root transformation in Camellia sinensis L[J]. Mol Biotechnol, 2011, 76: 235-243. [20] 陈琪. 茶树体内茶氨酸合成酶的表达、蛋白结构分析及信号调控的研究[D]. 合肥: 安徽农业大学, 2011. [21] Deng W W, Wang S, Chen Q, et al. Effect of salt treatment on theanine biosynthesis in Camellia sinensis seedlings[J]. Plant Physiology and Biochemistry, 2012, 56: 35-40. [22] 贺志荣, 项威, 徐燕, 等. 茶树挥发性萜类物质及其糖苷化合物生物合成的研究进展[J]. 茶叶科学, 2012, 32(1): 1-8 [23] Yang Z Y, Baldermann S, Watanabe N.Recent studies of the volatile compounds in tea[J]. Food Research International, 2013, 53: 585-599. [24] 陈亮, 赵丽萍. 茶树β-葡萄糖苷酶和β-樱草糖苷酶基因表达差异分析[J]. 园艺学报, 2009, 36(1): 87-92. [25] Phukon M, Namdev R, Deka D, et al. Construction of cDNA library and preliminary analysis of expressed sequence tags from tea plant [Camellia sinensis (L) O. Kuntze][J]. Scientia Horticulturae, 2012, 148: 246-254. [26] Ma C L, Chen L, Wang X C, et al. Differential expression analysis of different albescent stages of ‘Anji Baicha’ [(Camellia sinensis (L.) O. Kuntze)] using cDNA microarray[J]. Gene, 2012, 506: 202-206. [27] Wu H L, Chen D, Li J X, et al. De Novo Characterization of Leaf Transcriptome Using 454 Sequencing and Development of EST-SSR Markers in Tea (Camellia sinensis)[J]. Plant Mol Biol Rep, 2013, 31: 524-538. [28] 李娜娜, 陆建良, 郑新强, 等. 茶树品种福鼎大白茶和小雪芽叶片基因转录组研究[J]. 江苏农业学报, 2012, 28(5): 974-978. [29] Shi C Y, Yang H, Wei C L, et al. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds[J]. BMC Genomics, 2011, 12: 131. doi:10.1186/1471-2164-12-131. [30] Sun J, Lei P D, Zhang Z Z, et al. Shoot basal ends as novel explants for in vitro plantlet regeneration in an elite clone of tea[J]. Journal of Horticultural Science & Biotechnology, 2012, 87(1): 71-76. [31] 张凯, 丁阳平, 杨坚. 川渝地区野生大茶树儿茶素和咖啡碱含量比较分析[J]. 应用与环境生物学报, 2013, 19(2): 379-382. [32] 谢吉林, 肖海军, 孙鲁云, 等. 滇西南茶区晒青毛茶中咖啡碱质量分数的分布规律研究[J]. 云南农业大学学报, 2013, 28(6): 851-856. [33] 李俊, 郭晓关, 庞宏宇, 等. 贵州绿茶中咖啡碱和儿茶素含量分析[J]. 茶叶科学, 2012, 32(6): 480-484. [34] Kilel E C, Faraj A k, Wanyoko J K, et al. Green tea from purple leaf coloured tea clones in Kenya-their quality characteristics[J]. Food Chemistry, 2013, 141(2): 769-775. [35] Kerio L C, Wachira F N, Wanyoko J K, et al. Characterization of anthocyanins in Kenyan teas: extraction and identification[J]. Food Chemistry, 2012, 131(1): 31-38. [36] Wang X C, Chen L, Ma C L, et al. Genotypic variation of beta-carotene and lutein contents in tea germplasms, Camellia sinensis (L.) O. Kuntze[J]. Journal of Food Composition and Analysis, 2010, 23: 9-14. [37] 王秀梅. 祁门红茶加工过程中代谢谱分析及其品质形成机理研究[D]. 合肥: 安徽农业大学, 2012. [38] 陈红霞. 普洱茶发酵过程的代谢组学研究[D]. 北京: 北京化工大学, 2013. [39] Ku K M, Kim J Y, Park H J, et al. Application of metabolomics in the analysis of manufacturing type of Pu-erh tea and composition changes with different postfermentation year[J]. J Agric Food Chem, 2010, 58: 345-352. [40] 曹艳妮. 不同储存时间普洱茶的理化分析和抗氧化性研究[D]. 广州: 华南理工大学, 2011. [41] Zhou Z H, Zhang Y J, Xu M, et al. Puerins A and B, two new 8-C substituted flavan-3-ols from Pu-er tea[J]. Journal of Agricultural and Food Chemistry, 2005, 53: 8614-8617. [42] Wang W N, Zhang L, Wang S, et al. 8-C N-ethyl-2-pyrrolidinone substituted flavan-3-ols as the marker compounds of Chinese dark teas formed in the post-fermentation process provide significant antioxidative activity[J]. Food Chemistry, 2014, 152: 539-545. [43] Luo Z M, Du H X, An M Q, et al. Fuzhuanins A and B: the B-ring fission lactones of flavan-3-ols from Fuzhuan brick-tea[J]. Journal of Agricultural and Food Chemistry, 2013, 61: 6982-6990. [44] Zhu Y F, Chen J J, Ji X M, et al. Changes of major tea polyphenols and production of four new B-ring fission metabolites of catechins from post-fermented Jing-Wei Fu brick tea[J]. Food Chemistry, 2015, 170: 110-117. [45] 杨亦扬, 马立锋, 黎星辉, 等. 氮素水平对茶树新梢叶片代谢谱及其昼夜变化的影响[J]. 茶叶科学, 2013, 33(6): 491-499. [46] Yang Z Y, Kobayashi E, Katsuno T, et al. Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea (Camellia sinensis) plants in the dark[J]. Food Chem, 2012, 135, 2268-2276. [47] Sang S M, Lambert J D, Ho C T, et al. The chemistry and biotransformation of tea constituents[J]. Pharmacological Research, 2011, 64: 87-99. [48] 李大祥, 王华, 白蕊, 等. 茶红素化学及生物学活性研究进展[J]. 茶叶科学, 2013, 33(4): 327-335. [49] Scharbert S, Hofmann T.Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments[J]. J Agric Food Chem, 2005, 53(13): 5377-5384. [50] Xu W P, Song Q H, Li D X, et al. Discrimination of the production season of Chinese green tea by chemical analysis in combination with supervised pattern recognition[J]. J Agric Food Chem, 2012, 60(28): 7064-7070. [51] 李万春. 气质联用在不同茶叶品质鉴定中的应用[D]. 南京: 南京理工大学, 2012. [52] Zhang L, Zeng Z D, Ye G Z, et al. Non-targeted metabolomics study for the analysis of chemical compositions in three types of tea by using gas chromatography mass spectrometry and liquid chromatography-mass spectrometry[J]. Chinese Journal of Chromatography, 2014, 32(8): 804-816. [53] 叶茂. 应用代谢组学策略研究普洱茶及其对人体代谢的影响[D]. 上海: 上海交通大学, 2008. [54] Zhang Z Z, Wang S P, Wan X C, et al. Evaluation of sensory and composition properties in young tea shoots and their estimation by near infrared spectroscopy and partial least squares techniques[J]. Spectroscopy Europe, 2011, 23(4): 17-23. [55] Wang S P, Zhang Z Z, Ning J M, et al. Back propagation artificial neural network model for prediction of the quality of tea shoots through selection of relevant near infrared spectral data via synergy interval partial least squares[J]. Analytical Letters, 2013, 46(1): 184-195. [56] Gill G S, Kumar A, Agarwal R.Monitoring and grading of tea by computer vision - A review[J]. Journal of Food Engineering, 2011, 106: 13-19. |