[1] Chen L, Apostolides Z, Chen ZM.Global Tea Breeding: Achievements, Challenges and Perspectives [M]. Hangzhou: Springer-Zhejiang University Press, 2012. [2] 陈亮, 杨亚军, 虞富莲. 中国茶树种质资源研究的主要进展和展望[J]. 植物遗传资源学报, 2004, 5(4): 389-392. [3] 刘本英, 宋维希, 孙雪梅, 等. 云南茶树种质资源的研究进展及发展重点[J]. 植物遗传资源学报, 2012, 13(4): 529-534. [4] 高慧君, 黄亚辉. 华南茶区茶树资源研究概况——华南茶区茶叶生产概况材料之三[J]. 广东茶叶, 2012(3): 14-20. [5] 孙雪梅, 黄玫, 刘本英, 等. 云南野生茶树的地理分布及形态多样性[J]. 中国农学通报, 2012, 28(25): 277-288. [6] 王春梅, 唐茜. 崇州枇杷茶野生大茶树种质资源调查研究[J]. 西南农业学报, 2012, 25(2): 642-648. [7] 刘声传, 曹雨, 鄢东海, 等. 贵州野生茶树资源地理分布和形态特征与气候要素的关系[J]. 茶叶科学, 2013, 33(6): 517-525. [8] Chen L, Yao MZ, Wang XC, et al. Tea genetic resources in China[J]. International Journal of Tea Science, 2012, 8(2): 55-64. [9] 刘本英, 宋维希, 孙雪梅, 等. 云南茶树种质资源的整理整合及共享利用[J]. 西南农业学报, 2011, 24(2): 805-812. [10] 周炎花, 姚明哲, 陈亮, 等. 茶树遗传演化研究进展及SSR在茶树遗传演化研究中的应用前景[J]. 中国农学通报, 2009, 25(15): 9-15. [11] 陈亮, 虞富莲, 童启庆. 关于茶组植物分类与演化的讨论[J]. 茶叶科学, 2000, 20(2): 89-94. [12] 陈亮, 杨亚军, 虞富莲, 等. 茶树种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2005. [13] 陈亮, 虞富莲, 杨亚军, 等. NY/T 1312—2007农作物种质资源鉴定技术规范茶树[S]. 北京: 中国农业出版社, 2007. [14] 陈亮, 姚明哲, 王新超, 等. NY/T 2031—2011 农作物优异种质资源评价规范茶树[S]. 北京: 中国农业出版社, 2011. [15] 陈亮, 吕波, 虞富莲, 等. NY/T 2422—2013 植物新品种特异性、一致性和稳定性测试指南茶树[S]. 北京: 中国农业出版社, 2013. [16] 周炎花. 基于叶片形态学和EST-SSR茶树遗传多样性和遗传演化研究[D]. 福州: 福建农林大学, 2010: 10-18. [17] 蒋会兵, 宋维希, 矣兵, 等. 云南茶树种质资源的表型遗传多样性[J]. 作物学报, 2013, 39(11): 2000-2008. [18] Ni S, Yao MZ, Chen L, et al. Germplasm and breeding research of tea plant based on DNA marker approaches[J]. Frontiers of Agriculture in China, 2008, 2: 200-207. [19] Bandyopadhyay T.Molecular marker technology in genetic improvement of tea[J]. International Journal of Plant Breeding and Genetics, 2011, 5(1): 23-33. [20] Hu CY, Tsai YZ, Lin SF.Development of STS and CAPS markers for variety identification and genetic diversity analysis of tea germplasm in Taiwan[J]. Botanical Studies, 2014, 55: 12. [21] Fang WP, Meinhardt LW, Tan HW, et al. Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers[J]. Horticulture Research, 2014, 1: 14035. [22] Raina SN, Ahuja PS, Sharma RK, et al. Genetic structure and diversity of India hybrid tea[J]. Genetic Resources and Crop Evolution, 2012, 59: 1527-1541. [23] Taniguchi F, Kimura K, Saba T, et al. Worldwide core collections of tea (Camellia sinensis) based on SSR markers[J]. Tree Genetics & Genomes, 2014, DOI: 10.1007/s11295-014-0779-0. [24] Yao MZ, Ma CL, Qiao TT, et al. Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers[J]. Tree Genetics & Genomes, 2012, 8: 205-220. [25] Fang WP, Cheng H, Duan YC, et al. Genetic diversity and relationship of clonal tea (Camellia sinensis) cultivars in China as revealed by SSR markers[J]. Plant Systematics and Evolution, 2012, 298: 469-483. [26] Zhao DW, Yang JB, Yang SX, et al. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers[J]. BMC Plant Biology, 2014, 14: 14. [27] 王新超, 刘振, 姚明哲, 等. 中国茶树初级核心种质取样策略研究[J]. 茶叶科学, 2009, 29(2): 159-167. [28] Wang XC, Chen L, Yang YJ.Establishment of core collection for Chinese tea germplasm based on cultivated region grouping and phenotypic data[J]. Frontiers of Agriculture in China, 2011, 5(3): 344-350. [29] 刘振. 茶树资源核心种质的构建策略研究与EST-SSR标记的初步验证[D]. 北京: 中国农业科学院, 2008: 40-47. [30] Yoshida K, Takeda Y.Evaluation of Anthracnose resistance among tea genetic resources by wound-inoculation assay[J]. Japan Agricultural Research Quarterly, 2006, 40(4): 379-386. [31] 汪云刚, 矣兵, 冉隆珣, 等. 云南茶树种质资源的抗性鉴定和评价[J]. 中国农学通报, 2011, 27(13): 86-91. [32] 常玉玺, 郑德勇, 叶乃兴, 等. 福建茶树种质资源的茶籽油脂肪酸组成分析[J]. 茶叶科学, 2012, 32(1): 22-28. [33] Sabhapondit S, Karak T, Bhuyan LP, et al. Diversity of catechin in northeast Indian tea cultivars[J]. The Scientific World Journal, 2012: 485193. [34] Liang KY, Liu LF, Yu XP, et al. Evaluation of the resistance of different tea cultivars to tea Aphids by EPG technique[J]. Journal of Integrative Agriculture, 2012, 11(12): 2028-2034. [35] Sigh S, Sud RK, Gulati A, et al. Germplasm appraisal of western Himalayan tea: a breeding strategy for yield and quality improvement[J]. Genetic Resources and Crop Evolution, 2013, 60: 1501-1513. [36] Jin JQ, Ma JQ, Ma CL, et al. Determination of catechin content in representative Chinese tea germplasms[J]. Journal of Agricultural and Food Chemistry, 2014, 62: 9436-9441. [37] 吴华玲, 陈栋, 李家贤. 广东特异茶树种质资源选育研究进展[J]. 广东农业科学, 2012, 20: 15-24. [38] 陆建良, 林晨, 骆颖颖, 等. 茶树重要功能基因克隆研究进展[J]. 茶叶科学, 2007, 27(2): 95-103. [39] Shi CY, Yang H, Wei CL, et al. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds[J]. BMC Genomics, 2011, 12: 131. [40] Li Q, Huang J, Liu S, et al. Proteomic analysis of young leaves at three developmental stages in an albino tea cultivar[J]. Proteome Science, 2011, 9: 44. [41] Ma CL, Chen L, Wang XC, et al. Differential expression analysis of different albescent stages of ‘AnjiBaicha’ [Camellia sinensis(L.) O. Kuntze] using cDNA microarray[J]. Scientia Horticulturae, 2012, 148: 246-254. [42] Wang XC, Zhao QY, Ma CL, et al. Global transcriptome profiles of Camellia sinensis during cold acclimation[J]. BMC Genomics, 2013, 14: 415. [43] Ma JQ, Yao MZ, Ma CL, et al. Construction of a SSR-based genetic map and identification of QTLs for catechins content in tea plant (Camellia sinensis)[J]. PLoS ONE, 2014, 9(3): e93131. [44] 姚明哲, 乔婷婷, 马春雷, 等. EST-SSR标记与茶树表型性状关联的初步分析[J]. 茶叶科学, 2010, 30(1): 45-51. [45] 周晨阳, 金基强, 马春雷, 等. 茶树TIDH核苷酸多样性及与咖啡碱含量的关联分析[J]. 园艺学报, 2013, 40(5): 981-988. |