[1] Liang Chen, Zeno Apostolides, Zong-Mao Chen.Global Tea Breeding [M]. Hangzhou: Zhejiang University Press, 2012: 155-157. [2] Chen X, Liu TK, Hao S, et al. Differential gene expression analysis of self-incompatible lines in tea by cDNA-AFLP[J]. African Journal of Biotechnology, 2011, 10(53): 10906-10913. [3] Takeda Y.Phenotypes and genotypes related to tea gray blight disease resistance in the genetic resources of tea in Japan[J]. JARQ-Japan Agricultural Research Quarterly, 2003, 37(1): 31-35. [4] Das SK, Sabhapondit S, Ahmed G, et al. Biochemical evaluation of triploid progenies of diploid x tetraploid breeding populations of Camellia for genotypes rich in catechin and caffeine[J]. Biochemical Genetics, 2013, 51(5/6): 358-376. [5] 刘静, 丁兆堂, 赵进红, 等. 茶树多倍体诱变研究初报[J]. 山东农业大学学报: 自然科学版, 2003, 34: 475-478. [6] 王朝霞, 江昌俊, 李叶云. 利用N+诱变选育的茶树新品系“茶农8号”的特性[J]. 经济林研究, 2006, 24(1): 67-70. [7] 李家贤, 苗爱清, 何玉媚. 茶树人工杂交与辐射诱变新品系比较试验报告[J]. 广东茶叶, 2000(3): 29-34. [8] 杨亚军, 杨素娟, 杨跃华, 等. 早生优质适制名优绿茶新品种——中茶108选育研究[J]. 中国茶叶, 2003, 25(2): 12-14. [9] 董丽娟, 贺利雄. 不同波长激光对茶树当代诱变生理效应的研究[J]. 茶叶通讯, 1990(1): 19-20. [10] 赵东, 刘祖生, 陆建良, 等. 根癌农杆菌介导茶树转化研究[J]. 茶叶科学, 2001, 21(2): 108-111. [11] 张广辉, 梁月荣, 陆建良. 发根农杆菌介导的茶树发根高频诱导与遗传转化[J]. 茶叶科学, 2006, 26(1): 1-10. [12] 张广辉, 梁月荣, 陆建良, 等. 茶树咖啡因合成酶基因RNA干涉表达载体构建[J]. 茶叶科学, 2006, 26(4): 243-248. [13] Mondal TK, Bhattacharya A, Ahuja PS, et al. Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium-mediated transformation of somatic embryos[J]. Plant Cell Report, 2001, 20(8):712-720. [14] 奚彪. 茶树再生系统及其遗传转化的研究[D]. 杭州: 浙江农业大学, 1995: 68-80. [15] 吴姗, 梁月荣, 陆建良, 等. 茶树农杆菌转化和基因枪转化系统的优化[J]. 茶叶科学, 2003, 23(1): 6-10. [16] 吴姗, 梁月荣, 陆建良. 基因枪及其与农杆菌相结合的茶树外源基因转化条件优化[J]. 茶叶科学, 2005, 25(4): 55-64. [17] Li JH, Nesumi A, Shimizu K, et al. Chemosystematics of tea trees based on tea leaf polyphenols as phenetic markers[J]. Phytochemistry, 2010, 71(11/12): 1342-1349. [18] Wang XC, Chen L, Ma CL, et al. Genotypic variation of beta-carotene and lutein contents in tea germplasms, Camellia sinensis (L.) O. Kuntze[J]. Journal of Food Composition and Analysis, 2010, 23(1): 9-14. [19] Ogino A, Tanaka J, Taniguchi F, et al. Detection and characterization of caffeine-less tea plants originated from interspecific hybridization[J]. Breeding Science, 2009, 59(3): 277-283. [20] Kottur G, Venkatesan S, Kumar RSS, et al. Diversity among various forms of catechins and its synthesizing enzyme (phenylalanine ammonia lyase) in relation to quality of black tea (Camellia spp.)[J]. Journal of the Science of Food and Agriculture, 2010, 90(9): 1533-1537. [21] 陈佳, 覃秀菊, 罗小梅, 等. 桂绿1号特征特性及制六堡茶研究[J]. 中国茶叶, 2010, 32(8): 20-21. [22] Fraser K, Lane GA, Otter DE, et al. Analysis of metabolic markers of tea origin by UHPLC and high resolution mass spectrometry[J]. Food Research International, 2013, 53(2): 827-835. [23] Shi B, Zhao L, Zhi R, et al. Optimization of electronic nose sensor array by genetic algorithms in Xihu—Longjing Tea quality analysis[J]. Mathematical and Computer Modeling, 2013, 58(3/4): 752-758. [24] Panda RK, Stephens W, Matthews R.Modelling the influence of irrigation on the potential yield of tea (Camellia sinensis) in north-east India[J]. Experimental Agriculture, 2003, 39(2): 181-198. [25] 刘玉英, 徐泽, 罗云米. 干旱胁迫对不同茶树品种生理特性的影响[J]. 西南农业学报, 2010, 23(2): 387-389. [26] 袁祖丽, 李华鑫, 吕立哲, 等. 豫南引种茶树品种光合特性与品质成分的研究[J]. 河南农业大学学报, 2010, 44(3): 267-272. [27] Sharma V, Joshi R, Gulati A.Seasonal clonal variations and effects of stresses on quality chemicals and prephenate dehydratase enzyme activity in tea (Camellia sinensis)[J]. European Food Research Technology, 2011, 232(2): 307-317. [28] 高香凤, 李慧玲, 王庆森. 茶树叶片组织结构及次生物质与抗虫性关系研究进展[J]. 茶叶科学技术, 2011(2): 7-11. [29] 刘丽芳. 茶树不同品种和次生代谢物质对叶蝉取食行为影响的DCEPG研究[D]. 北京: 中国农业科学院, 2011. [30] 汪云刚, 矣兵, 冉隆珣, 等. 云南茶树种质资源的抗性鉴定和评价[J]. 中国农学通报, 2011, 27(13): 86-91. [31] 张翠玲, 王玉, 丁兆堂, 等. 茶树无性系品种抗寒性的LT50研究[J]. 山东农业科学, 2013, 45(6): 24-25. [32] 李惠民, 鹿颜. 茶树叶片含水量对抗寒性的影响研究[J]. 茶叶, 2013, 39(2): 72-74. [33] 马德新, 丁兆堂. 茶树优质抗寒种质及基因资源发掘与开发利用数据库建设[J]. 农业网络信息, 2013(3): 20-21. [34] 王开荣, 张国平, 李明, 等. 新梢白化系列茶树新品系性状比较研究[J]. 茶叶, 2006, 32(1): 22-24. [35] 王开荣, 李娜娜, 陆建良, 等. 遮荫对茶树品种“黄金芽”叶片基因表达谱的影响[J]. 茶叶, 2012, 38(4): 229-232. [36] Takeda Y.History and development in Japanese tea breeding[J]. Journal of the Korean Tea Society, 2000, 6(2): 139-158. [37] Takeda Y.Tea Breeding in Japan[J]. 茶叶, 2013, 39: 201-204. [38] 王志岚, 陈亮. 斯里兰卡茶产业与茶树育种[J]. 世界农业, 2011(9): 16-19. [39] 王志岚, 陈亮. 印度茶树资源与育种[J]. 中国茶叶, 2011, 33(6): 4-5. [40] 成浩, 周健, 栾征, 等. CO2浓度对工厂化繁育茶苗光合和生长的影响[J]. 茶叶科学, 2007, 27(3): 226-230. [41] 梁金波, 张强, 戴居会. 茶树“二段法”快繁育苗水培生根技术研究试验初探[J]. 茶叶, 2009, 35(1): 14-16. [42] 何盛银. 浙农117—茶农致富的希望[J]. 茶叶, 2003, 29(2): 68-691. [43] 朱双瑶, 舒若湘. 茶树良种浙农117试种总结[J]. 茶叶, 2005, 31(4): 249-251. [44] 罗列万. 2009年浙江茶产业亮点展望[J]. 茶叶, 2009, 35(1): 1-2. [45] 康孟利, 吴姗, 任明兴, 等. 嫁接茶树及其接穗和砧木品种冬季光合日变化[J]. 茶叶, 2003, 29(4): 202-205. [46] 李斌, 高峻. 茶树嫁接与云南茶园良种化[J]. 云南农业科技, 2009(1): 58-60. |