[1] Aguiree F, Brown A, Cho N H, et al. IDF Diabetes Atlas[J]. 2013(6): 11-14. [2] 陈灏珠. 实用内科学[M]. 北京: 人民卫生出版社, 2003: 949-957. [3] 万丽梅, 刘赫. 胰岛素抵抗的现代看法及分类探讨[J]. 实用糖尿病杂志, 2014(3): 4-6. [4] 苑晓春. 茶叶生物化学[M]. 北京: 中国农业出版社, 2003: 9-15. [5] 屠幼英. 茶与健康[M]. 西安: 世界图书出版西安有限公司, 2011: 121-132. [6] Poitout V, Robertson R P.Glucolipotoxicity: fuel excess and β-cell dysfunction[J]. Endocrine Reviews, 2008, 29(3): 351-366. [7] Kamiyama O, Sanae F, Ikeda K, et al. In vitro inhibition of α-glucosidases and glycogen phosphorylase by catechin gallates in green tea[J]. Food Chemistry, 2010, 122(4): 1061-1066. [8] Oboh G, Ogunruku O O, Ogidiolu F O, et al. Interaction of some commercial teas with some carbohydrate metabolizing enzymes linked with type-2 diabetes: A dietary intervention in the prevention of type-2 diabetes[J]. Advances in preventive medicine, 2014, doi: 10.1155/2014/534082. [9] Kong D, Wu J, Sun S, et al. A comparative study on antioxidant activity and inhibitory potential against key enzymes related to type 2 diabetes of four typical teas[J]. Journal of Food and Nutrition Research, 2014, 2(9): 652-658. [10] Gao J, Xu P, Wang Y, et al. Combined effects of green tea extracts, green tea polyphenols or epigallocatechin gallate with acarbose on inhibition against α-amylase and α-glucosidase in vitro[J]. Molecules, 2013, 18(9): 11614-11623. [11] Hara K, Ohara M, Hayashi I, et al. The green tea polyphenol (-)-epigallocatechin gallate precipitates salivary proteins including alpha-amylase: biochemical implications for oral health[J]. European Journal of Oral Sciences, 2012, 120(2): 132-139. [12] Miao M, Jiang H, Jiang B, et al. Structure elucidation of catechins for modulation of starch digestion[J]. LWT-Food Science and Technology, 2014, 57(1): 188-193. [13] Forester S C, Gu Y, Lambert J D.Inhibition of starch digestion by the green tea polyphenol,(-)-epigallocatechin- 3-gallate[J]. Molecular Nutrition & Food Research, 2012, 56(11): 1647-1654. [14] Fei Q, Gao Y, Zhang X, et al. Effects of oolong tea polyphenols, EGCG, and EGCG 3″Me on pancreatic α-amylase activity in vitro[J]. Journal of Agricultural and Food Chemistry, 2014, 62(39): 9507-9514. [15] Honda M, Hara Y.Inhibition of rat small intestinal sucrase and α-glucosidase activities by tea polyphenols[J]. Bioscience, Biotechnology, and Biochemistry, 1993, 57(1): 123-124. [16] Matsui T, Tanaka T, Tamura S, et al. α-Glucosidase inhibitory profile of catechins and theaflavins[J]. Journal of Agricultural and Food Fhemistry, 2007, 55(1): 99-105. [17] Tadera K, Minami Y, Takamatsu K, et al. Inhibition of. ALPHA.-Glucosidase and. ALPHA.-Amylase by Flavonoids[J]. Journal of Nutritional Science and Vitaminology, 2006, 52(2): 149-153. [18] Kobayashi Y, Suzuki M, Satsu H, et al. Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism[J]. Journal of Agricultural and Food Chemistry, 2000, 48(11): 5618-5623. [19] Snoussi C, Ducroc R, Hamdaoui M H, et al. Green tea decoction improves glucose tolerance and reduces weight gain of rats fed normal and high-fat diet[J]. The Journal of Nutritional Biochemistry, 2014, 25(5): 557-564. [20] Saltiel A R, Kahn C R.Insulin signalling and the regulation of glucose and lipid metabolism[J]. Nature, 2001, 414(6865): 799-806. [21] Chang L, Chiang S H, Saltiel A R.Insulin signaling and the regulation of glucose transport[J]. Molecular Medicine, 2004, 10(7/8/9/10/11/12): 65. [22] Bao S, Cao Y, Fan C, et al. Epigallocatechin gallate improves insulin signaling by decreasing toll-like receptor 4 (TLR4) activity in adipose tissues of high-fat diet rats[J]. Molecular Nutrition & Food Research, 2014, 58(4): 677-686. [23] 王进, 沈剑敏, 黄华宇, 等. 茶多酚对胰岛素分泌和胰岛内钙离子浓度的影响[J]. 兰州大学学报: 医学版, 2010, 36(4): 44-47. [24] Yuskavage J K.Epigallocatechin Gallate in the regulation of insulin secretion [D]. Virginia: Virginia Polytechnic Institute and State University, 2008: 31-38. [25] Tang WP, Li SM, Liu Y, et al. Anti-diabetic activity of chemically profiled green tea and black tea extracts in a type 2 diabetes mice model via different mechanisms[J]. Journal of Functional Foods, 2013, 5(4): 1784-1793. [26] 唐伟, 朱剑, 武晓泓, 等. 胰岛素信号传导及其调节机制[J]. 实用糖尿病杂志, 2005, 1(3): 43-49. [27] Li Y, Zhao S, Zhang W, et al. Epigallocatechin-3-O-gallate (EGCG) attenuates FFAs-induced peripheral insulin resistance through AMPK pathway and insulin signaling pathway in vivo[J]. Diabetes Research and Clinical Practice, 2011, 93(2): 205-214. [28] Zhang Z F, Li Q, Liang J, et al. Epigallocatechin- 3-O-gallate (EGCG) protects the insulin sensitivity in rat L6 muscle cells exposed to dexamethasone condition[J]. Phytomedicine, 2010, 17(1): 14-18. [29] Lin C L, Lin J K.Epigallocatechin gallate (EGCG) attenuates high glucose-induced insulin signaling blockade in human hepG2 hepatoma cells[J]. Molecular Nutrition & Food Research, 2008, 52(8): 930-939. [30] Cai E P, Lin J K.Epigallocatechin gallate (EGCG) and rutin suppress the glucotoxicity through activating IRS2 and AMPK signaling in rat pancreatic β cells[J]. Journal of Agricultural and Food Chemistry, 2009, 57(20): 9817-9827. [31] Ma J, Li Z, Xing S, et al. Tea contains potent inhibitors of tyrosine phosphatase PTP1B[J]. Biochemical and Biophysical Research Communications, 2011, 407(1): 98-102. [32] Goldstein B J, Bittner-Kowalczyk A, White M F, et al. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein[J]. Journal of Biological Chemistry, 2000, 275(6): 4283-4289. [33] 张研, 袁莉, 唐兆生. 高糖毒性通过JNK信号通路对胰岛β细胞系INS-1细胞活性和凋亡的影响[J]. 中国病理生理杂志, 2010, 26(4): 755-759. [34] Jung K H, Choi H S, Kim D H, et al. Epigallocatechin gallate stimulates glucose uptake through the phosphatidylinositol 3-kinase-mediated pathway in L6 rat skeletal muscle cells[J]. Journal of Medicinal Food, 2008, 11(3): 429-434. [35] Jang H J, Ridgeway S D, Kim J.Effects of the green tea polyphenol epigallocatechin-3-gallate on high-fat diet-induced insulin resistance and endothelial dysfunction[J]. American Journal of Physiology-Endocrinology and Metabolism, 2013, 305(12): 1444-1451. [36] Ueda M, Nishiumi S, Nagayasu H, et al. Epigallocatechin gallate promotes GLUT4 translocation in skeletal muscle[J]. Biochemical and Biophysical Research Communications, 2008, 377(1): 286-290. [37] Ueda M, Furuyashiki T, Yamada K, et al. Tea catechins modulate the glucose transport system in 3T3-L1 adipocytes[J]. Food & Function, 2010, 1(2): 167-173. [38] Qiu J, Maekawa K, Kitamura Y, et al. Stimulation of glucose uptake by theasinensins through the AMP-activated protein kinase pathway in rat skeletal muscle cells[J]. Biochemical Pharmacology, 2014, 87(2): 344-351. [39] 黄宁, 李文佳, 安利国, 等. FoxO1的功能及其与人类疾病的关系[J]. 生命科学, 2012, 24(4): 334-339. [40] 张艳萍, 李继安. 中药治疗2型糖尿病胰岛素抵抗的分子机制研究进展[J]. 华北煤炭医学院学报, 2011, 13(4): 477-479. [41] Anton S, Melville L, Rena G.Epigallocatechin gallate (EGCG) mimics insulin action on the transcription factor FOXO1a and elicits cellular responses in the presence and absence of insulin[J]. Cellular Signalling, 2007, 19(2): 378-383. [42] Cameron A R, Anton S, Melville L, et al. Black tea polyphenols mimic insulin/insulin-like growth factor-1 signalling to the longevity factor FOXO1a[J]. Aging Cell, 2008, 7(1): 69-77. [43] Towler M C, Hardie D G.AMP-activated protein kinase in metabolic control and insulin signaling[J]. Circulation Research, 2007, 100(3): 328-341. [44] Koyama Y, Abe K, Sano Y, et al. Effects of green tea on gene expression of hepatic gluconeogenic enzymes in vivo[J]. Planta Medica, 2004, 70(11): 1100-1102. [45] Collins Q F, Liu H Y, Pi J, et al. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase[J]. Journal of Biological Chemistry, 2007, 282(41): 30143-30149. [46] Lee H, Bae S, Yoon Y.The anti-adipogenic effects of (-) epigallocatechin gallate are dependent on the WNT/β-catenin pathway[J]. The Journal of Nutritional Biochemistry, 2013, 24(7): 1232-1240. [47] Kim K B.Anti-obesity effect of EGCG and glucosamine-6-phosphate through decreased expression of genes related to adipogenesis and cell cycle arrest in 3T3-L1 adipocytes[J]. Journal of Nutrition and Health, 2014, 47(1): 1-11. [48] Kim H, Hiraishi A, Tsuchiya K, et al. (-) Epigallocatechin gallate suppresses the differentiation of 3T3-L1 preadipocytes through transcription factors FoxO1 and SREBP1c[J]. Cytotechnology, 2010, 62(3): 245-255. [49] Zhang B B, Zhou G, Li C.AMPK: an emerging drug target for diabetes and the metabolic syndrome[J]. Cell Metabolism, 2009, 9(5): 407-416. [50] Murase T, Misawa K, Haramizu S, et al. Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway[J]. Biochemical Pharmacology, 2009, 78(1): 78-84. [51] Wang X, Tian W.Green tea epigallocatechin gallate: a natural inhibitor of fatty-acid synthase[J]. Biochemical and Biophysical Research Communications, 2001, 288(5): 1200-1206. [52] Du Y T, Wang X, Wu X D, et al. Keemun black tea extract contains potent fatty acid synthase inhibitors and reduces food intake and body weight of rats via oral administration[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2005, 20(4): 349-356. [53] Lin C L, Huang H C, Lin J K.Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells[J]. Journal of Lipid Research, 2007, 48(11): 2334-2343. [54] Mochizuki M, Hasegawa N.Effects of green tea catechin-induced lipolysis on cytosol glycerol content in differentiated 3T3-L1 cells[J]. Phytotherapy Research, 2004, 18(11): 945-946. [55] Sae-tan S, Grove K A, Kennett M J, et al. (-)-Epigallocatechin-3-gallate increases the expression of genes related to fat oxidation in the skeletal muscle of high fat-fed mice [J]. Food & Function, 2011, 2(2): 111-116. [56] 陈继英, 郭嘉林, 张存彦, 等. 茶多酚的研究进展[J]. 中草药, 2004, 35(10): 133-135. [57] 孙权, 尹学哲, 全吉淑, 等. 茶多酚对糖尿病大鼠的抗氧化作用[J]. 食品研究与开发, 2007(6): 9-11. [58] 胡秀芳, 毛建妹, 蒋丽萍, 等. 茶多酚与其他抗氧化剂的协同作用[J]. 茶叶, 2000, 26(2): 66-69. [59] Liu J, Tang Y, Feng Z, et al. (-)-Epigallocatechin-3-gallate attenuated myocardial mitochondrial dysfunction and autophagy in diabetic Goto-Kakizaki (GK) rats[J]. Free radical research, 2014, 48(8): 898-906. [60] 唐华荣, 温武军, 杨桂文. EGCG抗炎及抗肿瘤活性的相关性[J]. 科技信息, 2010(36): 494. [61] Lee S J, Kang H W, Lee S Y, et al. Green tea polyphenol epigallocatechin-3-O-gallate attenuates lipopolysaccharide- induced nitric oxide production in RAW264. 7 Cells[J]. Journal of Food and Nutrition Research, 2014, 2(7): 425-428. [62] 张东芳, 肖鹏, 韩晨露, 等. 表没食子儿茶素-3-没食子酸酯抑制脂多糖诱导的巨噬细胞促炎因子TNF-α和IL-1β基因表达[J]. 中国生物化学与分子生物学报, 2014, 30(4): 402-408. [63] 利基林, 沈筱芸, 易海, 等. EGCG对体外诱导小鼠Th17细胞的产生及促炎因子调控的影响[J]. 国际检验医学杂志, 2011, 32(15): 1668-1669, 1672. [64] Pullikotil P, Chen H, Muniyappa R, et al. Epigallocatechin gallate induces expression of heme oxygenase-1 in endothelial cells via p38 MAPK and Nrf-2 that suppresses proinflammatory actions of TNF-α[J]. The Journal of Nutritional Biochemistry, 2012, 23(9): 1134-1145. [65] Bae J Y, Choi J S, Choi Y J, et al. (-) Epigallocatechin gallate hampers collagen destruction and collagenase activation in ultraviolet-B-irradiated human dermal fibroblasts: Involvement of mitogen-activated protein kinase[J]. Food and Chemical Toxicology, 2008, 46(4): 1298-1307. [66] Hisanaga A, Ishida H, Sakao K, et al. Anti-inflammatory activity and molecular mechanism of Oolong tea theasinensin[J]. Food & Function, 2014(5): 1891-1897. [67] Zhang Z, Ding Y, Dai X, et al. Epigallocatechin-3-gallate protects pro-inflammatory cytokine induced injuries in insulin-producing cells through the mitochondrial pathway[J]. European Journal of Pharmacology, 2011, 670(1): 311-316. [68] Satoh T, Igarashi M, Yamada S, et al. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity[J]. Journal of Ethnopharmacology, 2015,161: 147-155. |