[1] |
Khan N, Mukhtar H.Tea polyphenols for health promotion[J]. Life Science, 2007, 81(7): 519-533.
|
[2] |
Almajano MP, Carbó R, Jiménez JAL, et al. Antioxidant and antimicrobial activities of tea infusions[J]. Food Chemistry, 2008, 108(1): 55-63.
|
[3] |
Friedman M.Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas[J]. Molecular Nutrition & Food Research, 2007, 51(1): 116-134.
|
[4] |
Reygaert WC.The antimicrobial possibilities of green tea[J]. Front Microbiology, 2014, 5: 434.
|
[5] |
Cui Y, Oh YJ, Lim J, et al. AFM study of the differential inhibitory effects of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against Gram-positive and Gram-negative bacteria[J]. Food Microbiology, 2012, 29(1): 80-87.
|
[6] |
Yi S, Li J, Zhu J, et al. Effect of tea polyphenols on microbiological and biochemical quality of Collichthys fish ball[J]. Journal of the Science of Food and Agriculture, 2011, 91(9): 1591-1597.
|
[7] |
Sirk TW, Brown EF, Friedman M, et al. Molecular binding of catechins to biomembranes: relationship to biological activity[J]. Journal of Agricultural and Food Chemistry, 2009, 57(15): 6720-6728.
|
[8] |
Navarro-Martínez MD, Navarro-Perán E, Cabezas-Herrera J, et al. Antifolate activity of epigallocatechin against Stenotrophomonas maltophilia[J]. Antimicrobial Agents and Chemotherapy, 2005, 49(7): 2914-2920.
|
[9] |
Zhang YM, Rock CO.Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase[J]. The Journal of Biological Chemistry, 2004, 279(30): 30994-31001.
|
[10] |
Arakawa H, Maeda M, Okubo S, et al. Role of hydrogen peroxide in bactericidal action of catechin[J]. Biological & Pharmaceutical Bulletin, 2004, 27(3): 277-281.
|
[11] |
Maeta K, Nomura W, Takatsume Y, et al. Green tea polyphenols function as prooxidants to activate oxidativestress-responsive transcription factors in yeasts[J]. Applied and Environmental Microbiology, 2007, 73(2): 572-580.
|
[12] |
Lin MH, Tsai TY, Hsieh SC, et al. Susceptibility of Vibrio parahaemolyticus to disinfectants after prior exposure to sublethal stress[J]. Food Microbiology, 2013, 34(1): 202-206.
|
[13] |
Hsiao WL, Ho WL, Chou CC.Sub-lethal heat treatment affects the tolerance of Cronobacter sakazakii BCRC 13988 to various organic acids, simulated gastric juice and bile solution[J]. International Journal of Food Microbiology, 2010, 144(2): 280-284.
|
[14] |
Gennari M, Dragotto F.A study of the incidence of different fluorescent Pseudomonas species and biovars in the microflora of fresh and spoiled meat and fish, raw milk, cheese, soil and water[J]. the Journal of Applied Bacteriology, 1992, 72(4): 281-288.
|
[15] |
Hamanaka D, Onishi M, Genkawa T, et al. Effects of temperature and nutrient concentration on the structural characteristics and removal of vegetable-associated Pseudomonas biofilm[J]. Food Control, 2012, 24(1/2): 165-170.
|
[16] |
Dumas JL, van Delden C, Perron K, et al. Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR [J]. FEMS Microbiology Letters, 2006, 254(2): 217-225.
|
[17] |
Palma M, DeLuca D, Worgall S, et al. Transcriptome analysis of the response of Pseudomonas aeruginosa to hydrogen peroxide[J]. Journal of Bacteriology, 2004, 186(1): 248-252.
|
[18] |
Burt SA, van der Zee R, Koets AP, et al. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157: H7 [J]. Applied and Environmental Microbiology, 2007, 73(14): 4484-4490.
|
[19] |
Chang W, Small DA, Toghrol F, et al. Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide[J]. BMC Genomics, 2005, 6: 115-128.
|
[20] |
Yi SM, Zhu JL, Fu LL, et al. Tea polyphenols inhibit Pseudomonas aeruginosa through damage to the cell membrane[J]. International Journal of Food Microbiology, 2010, 144(1): 111-117.
|
[21] |
Rangel DE.Stress induced cross-protection against environmental challenges on prokaryotic and eukaryotic microbes[J]. World Journal of Microbiology & Biotechnology, 2011, 27(6): 1281-1296.
|
[22] |
Arroyo C, Cebrián G, Condón S, et al. Development of resistance in Cronobacter sakazakii ATCC 29544 to thermal and nonthermal processes after exposure to stressing environmental conditions[J]. Journal of Applied Microbiology, 2012, 112(3): 561-570.
|
[23] |
Bikels-Goshen T, Landau E, Saguy S, et al. Staphylococcal strains adapted to epigallocathechin gallate (EGCG) show reduced susceptibility to vancomycin, oxacillin and ampicillin, increased heat tolerance, and altered cell morphology[J]. International Journal of Food Microbiology, 2010, 138(1/2): 26-31.
|
[24] |
Cho YS, Schiller NL, Kahng HY, et al. Cellular responses and proteomic analysis of Escherichia coli exposed to green tea polyphenols[J]. Current Microbiology, 2007, 55(6): 501-506.
|
[25] |
Lee PC, Bochner BR, Ames BN.AppppA, heat-shock stress, and cell oxidation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(24): 7496-7500.
|
[26] |
Torres MA, Dangl JL.Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development[J]. Current Opinion in Plant Biology, 2005, 8(4): 397-403.
|
[27] |
Aertsen A, De Spiegeleer P, Vanoirbeek K, et al. Induction of oxidative stress by high hydrostatic pressure in Escherichia coli[J]. Applied and Environmental Microbiology, 2005, 71(5): 2226-2231.
|
[28] |
Kaku N, Hibino T, Tanaka Y, et al. Effects of overexpression of Escherichia coli katE and bet genes on the tolerance for salt stress in a freshwater cyanobacterium Synechococcus sp. PCC 7942[J]. Plant Science, 2000, 159(2): 281-288.
|
[29] |
Yu P.Enhancing survival of Escherichia coli by increasing the periplasmic expression of Cu, Zn superoxide dismutase from Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 2007, 76(4): 867-871.
|
[30] |
Van Bogelen RA, Kelley PM, Neidhardt FC.Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli [J]. Journal of Bacteriology, 1987, 169(1): 26-32.
|
[31] |
Silva A, Sampaio-Marques B, Fernandes A, et al. Involvement of yeast HSP90 isoforms in response to stress and cell death induced by acetic acid[J]. PLoS One, 2013, 8(8): e71294.
|
[32] |
Singh VK, Utaida S, Jackson LS, et al. Role for dnaK locus in tolerance of multiple stresses in Staphylococcus aureus [J]. Microbiology, 2007, 153(Pt 9): 3162-3173.
|
[33] |
Lee S, Ahn S, Lee H, et al. Gene-related strain variation of Staphylococcus aureus for homologous resistance response to acid stress[J]. Journal of Food Protection, 2014, 77(10): 1794-1798.
|