茶叶科学 ›› 2018, Vol. 38 ›› Issue (1): 1-8.doi: 10.13305/j.cnki.jts.2018.01.001
• • 下一篇
李勇1, 唐澈2, 赵华1,*, 倪德江1
收稿日期:
2017-06-29
修回日期:
2017-10-24
出版日期:
2018-02-15
发布日期:
2019-08-28
通讯作者:
*zhaohua@mail.hzau.edu.cn
作者简介:
李勇,男,硕士研究生,主要从事茶树铝富集机理的研究。
基金资助:
LI Yong1, TANG Che2, ZHAO Hua1,*, NI Dejiang1
Received:
2017-06-29
Revised:
2017-10-24
Online:
2018-02-15
Published:
2019-08-28
摘要: 酸性土壤占世界可耕作土壤的30%~40%,且呈逐年上升趋势,铝毒是酸性土壤中作物生产的主要限制因素。作为铝富集植物,茶树体内铝含量是其他植物的几十倍,且不表现出根尖生长受抑制及根冠表皮脱落等典型铝毒症状,适宜浓度的铝还能促进茶树的生长。本文主要对茶树铝富集特性、铝在茶树细胞内存在形态及亚细胞分布、茶树对铝的生理响应、茶树耐铝聚铝的可能机理等研究进展进行了综述,并对后续研究思路作了展望。
中图分类号:
李勇, 唐澈, 赵华, 倪德江. 茶树耐铝聚铝特性及其机理研究进展[J]. 茶叶科学, 2018, 38(1): 1-8. doi: 10.13305/j.cnki.jts.2018.01.001.
LI Yong, TANG Che, ZHAO Hua, NI Dejiang. Advances of Aluminum Tolerance and Accumulation in Tea Plant[J]. Journal of Tea Science, 2018, 38(1): 1-8. doi: 10.13305/j.cnki.jts.2018.01.001.
[1] | Haug A, Foy C E.Molecular aspects of aluminum toxicity[J]. Critical Reviews in Plant Sciences, 1983, 1(4): 345-373. |
[2] | Ma J F.Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants[J]. International Review of Cytology-A Survey of Cell Biology, 2007, 264: 225-253. |
[3] | Ma JF, Shen R, Zhao Z, et al.Response of rice to Al stress and identification of quantitative trait loci for Al tolerance[J]. Plant & Cell Physiology, 2002, 43: 652-659. |
[4] | Matsumoto H, Hirasawa E, Morimura S, et al.Localization of aluminium in tea leaves[J]. Plant & Cell Physiology, 1976, 17(3): 627-631. |
[5] | Ghanati F, Morita A, Yokota H.Effects of aluminum on the growth of tea plant and activation of antioxidant system[J]. Plant and Soil, 2005, 276(1): 133-141. |
[6] | Hajiboland R, Rad S B, Barcelo J, et al.Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis)[J]. Journal Plant Nutrition and Soil Science, 2013, 176: 616-625. |
[7] | Li Y, Huang J, Song X W, et al.An RNA-Seq transcriptome analysis revealing novel insights into aluminum tolerance and accumulation in tea plant[J]. Planta, 2017, 246: 91-103. |
[8] | Xu Q S, Wang Y, Ding Z T, et al.Aluminum induced physiological and proteomic responses in tea (Camellia sinensis) roots and leaves[J]. Plant Physiology and Biochemistry, 2017, 115: 141-151. |
[9] | 梁月荣. 茶树铝代谢研究及其对作物抗铝育种的意义[J]. 福建茶叶, 1993(3): 20-24. |
[10] | Carr H P, Lombi E, Kupper H, et al.Accumulation and distribution of aluminium and other elements in tea (Camellia sinensis) leaves[J]. Agronomie, 2004, 23(8): 705-710. |
[11] | Gao H J, Zhao Q, Zhang X C.Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots[J]. Journal of Agricultural and Food Chemistry, 2014, 62: 2313-2319. |
[12] | Fung K F, Carr H P, Poon B H, et al.A comparison of aluminum levels in tea products from Hong Kong markets and in varieties of tea plants from Hong Kong and India[J]. Chemosphere, 2009, 75(7): 955-962. |
[13] | 于翠平. 茶树耐铝的基因型差异及机理研究[D]. 杭州: 浙江大学, 2014: 34. |
[14] | 王琼琼, 薛志慧, 陈志丹, 等. 不同茶树种质间氟铝元素积累特性的研究[J]. 热带作物学报, 2016, 37(5): 862-869. |
[15] | Nagata T, Hayatsu M, Kosuge N.Identification of aluminium forms in tea leaves by 27Al NMR[J]. Phytochemistry, 1992, 31: 1215-1218. |
[16] | Morita A, Horie H, Fujii Y, et al.Chemical forms of aluminum in xylem sap of tea plants (Camellia sinensis L.)[J]. Phytochemistry, 2004, 65: 2775-2780. |
[17] | Morita A, Yanagisawa O, Takatsu S, et al.Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinensis (L.) Kuntze)[J]. Phytochemistry, 2008, 69(1): 147-153. |
[18] | 孙婷, 刘鹏, 郑人卫, 等. 茶树体内铝形态及铝累积特性[J]. 作物学报, 2009, 35(10): 1909-1915. |
[19] | 潘根生, Masaki T, 小西茂毅. 茶根尖细胞各胞器分部的分离及其绍的分布[J]. 浙江农业大学学报, 1991, 17(3): 255-258. |
[20] | Tolrà R, Vogel-Mikuš K, Hajiboland R, et al.Localization of aluminium in tea (Camellia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy[J]. Journal of Plant Research, 2011, 124(1): 165-172. |
[21] | 马士成. 铝对茶树氟吸收、累积、分布特性的影响及其机理研究[D]. 杭州: 浙江大学, 2012: 80. |
[22] | Chenery E M.A preliminary study of aluminium and the tea bush[J]. Plant and Soil, 1955, 6(2): 174-200. |
[23] | 方兴汉, 吴彩. 铝对茶树无机营养吸收和分布的影响[J]. 中国茶叶, 1989, 11(4): 34-35. |
[24] | 潘根生, 小西茂毅. 供铝条件下氮对茶苗生长发育的影响[J]. 浙江大学学报(农业与生命科学版), 1995(5): 461-464. |
[25] | Xu Q S, Wang Y, Ding Z T, et al.Aluminum induced metabolic responses in two tea cultivars[J]. Plant Physiology and Biochemistry, 2016, 101: 162-172. |
[26] | Ruan J, Ma L, Shi Y, et al.Effects of litter incorporation and nitrogen fertilization on the contents of extractable aluminium in the rhizosphere soil of tea plant (Camallia sinensis (L.) O. Kuntze)[J]. Plant and Soil, 2004, 263(1): 283-296. |
[27] | Chen Y M, Tsao T M, Liu C C, et al.Aluminium and nutrients induce changes in the profiles of phenolic substances in tea plants (Camellia sinensis CV TTES, No. 12 (TTE))[J]. Journal of the Science of Food and Agriculture, 2011, 91(6): 1111-1117. |
[28] | Yang Y, Yu Liu Y, Huang C F, et al.Aluminium alleviates fluoride toxicity in tea (Camellia sinensis)[J]. Plant and Soil, 2016, 402: 179-190. |
[29] | 李春雷, 倪德江. 铝对茶树光合特性和叶片超微结构的影响[J]. 湖北农业科学, 2014, 53(3): 604-606. |
[30] | Brunner I, Sperisen C.Aluminium exclusion and aluminium tolerance in woody plants[J]. Frontier of Plant Science, 2013, 4(1): 172. doi:10.3389/pis.2013.0072. |
[31] | Morita A, Yanagisawa O, Maeda S, et al.Tea plant (Camellia sinensis L.) roots secrete oxalic acid and caffeine into medium containing aluminum[J]. Soil Science and Plant Nutrition, 2011, 57: 796-802. |
[32] | Yancey P H.Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses[J]. Journal of Experimental and Biology, 2005, 208(15): 2819-2830. |
[33] | Hamilton C A, Good A G, Taylor G J.Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat[J]. Plant Physiology, 2001, 125(4): 2068-2077. |
[34] | Wang ZQ, Xu XY, Gong QQ, et al.Root proteome of rice studied by iTRAQ provides integrated insight into aluminum stress tolerance mechanisms in plants[J]. Journal of Proteomics, 2014, 98: 189-205. |
[35] | Cramer W A, Zhang H, Yan J, et al.Transmembrane traffic in the cytochrome b6f complex[J]. Annual Review of Biochemistry, 2006, 75(1): 769-790. |
[36] | Rowland J G, Simon W J, Nishiyama Y, et al.Differential proteomic analysis using iTRAQ reveals changes in thylakoids associated with Photosystem II-acquired thermotolerance in Synechocystis sp. PCC 6803[J]. Proteomics, 2010, 10(10): 1917-1929. |
[37] | Dai H, Cao F, Chen X, et al.Comparative proteomic analysis of aluminum tolerance in tibetan wild and cultivated barleys[J]. PLoS One, 2013, 8(5): e63428. |
[38] | Kumari M, Taylor G J, Deyholos M K.Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana[J]. Moleular Genetics and Genomics, 2008, 279: 339-357. |
[39] | 罗亮, 谢忠雷, 刘鹏, 等. 茶树对铝毒生理响应的研究[J]. 农业环境科学学报, 2006, 25(2): 305-308. |
[40] | 于翠平, 潘志强, 陈杰, 等. 铝对茶树生长与生理特性影响的研究[J]. 植物营养与肥料学报, 2012, 18(1): 182-187. |
[41] | Huang C F, Yamaji N, Chen Z C, et al.A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice[J]. Plant Journal, 2012, 69: 857-867. |
[42] | Liu J, Magalhaes J V, Shaff J, et al.Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance[J]. Plant Journal, 2009, 57(3): 389-399. |
[43] | Larsen P B, Geisler M J, Jones C A, et al.ALS3 encodes a phloemlocalized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis[J]. Plant Journal, 2005, 41: 353-363. |
[44] | Yokosho K, Yamaji N, Ma J F.Global transcriptome analysis of Al-induced genes in an Alaccumulating species, common buckwheat (Fagopyrum esculentum Moench)[J]. Plant Cell and Physiology, 2014, 55(12): 2077-2091. |
[45] | Dean M, Rzhetsky A, Allikmets R.The human ATPbinding cassette (ABC) transporter superfamily[J]. Genome Research, 2001, 11: 1156-1166. |
[46] | Bose J, Babourina O, Rengel Z.Role of magnesium in alleviation of aluminium toxicity in plants[J]. Journal Experimental and Botany, 2011, 62(7): 2251-2264. |
[47] | Yokosho K, Yamaji N, Ma J F.An Al-inducible MATE gene is involved in external detoxification of Al in rice[J]. Plant Journal, 2011, 68(6): 1061-1069. |
[48] | Negishi T, Oshima K, Hattori M, et al.Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue Hydrangea Sepals of aluminum hyperaccumulating plant[J]. PLoS One, 2012, 7: e43189. doi:10.3171/journal.pone.0043189. |
[49] | Loqué D, Ludewig U, Yuan L, et al.Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole[J]. Plant Physiology, 2005, 137: 671-680. |
[50] | Liu L H, Wirén N V.Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis[J]. Plant Physiology, 2003, 133: 1220-1228. |
[51] | Sawaki Y, Iuchi S, Kobayashi Y, et al.STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities[J]. Plant Physiology, 2009, 150: 281-294. |
[52] | Yamaji N, Huang C, Nagao S, et al.A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice[J]. The Plant Cell, 2009, 21: 3339-3349. |
[53] | Ohyama Y, Ito H, Kobayashi Y, et al.Characterization of AtSTOP1 orthologous genes in tobacco and other plant species[J]. Plant Physiology, 2013, 162: 1937-1946. |
[54] | Rushton P J, Somssich I E, Ringler P, et al.WRKY transcription factors[J]. Trends in Plant Science, 2010, 15(5): 247-258. |
[55] | Ding Z J, Yan J Y, Xu X Y, et al.WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminum-induced malate secretion in Arabidopsis[J]. Plant Journal, 2013, 76: 825-835. |
[56] | Wagatsuma T, Khan M S H, Watanabe T, et al. Higher sterol content regulated by CYP51 with concomitant lower phospholipid content in membranes is a common strategy for aluminium tolerance in several plant species[J]. Journal of Experimental Botany, 2015, 66: 907-918. |
[57] | Oh M W, Roy S K, Kamal A H M, et al. Proteome analysis of roots of wheat seedlings under aluminum stress[J]. Molecular Biology Reports, 2014, 41: 671-681. |
[58] | Xia E H, Zhang H B, Sheng J,et al.The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Molecular Plant, 2017, 10(6): 866-877 |
[1] | 董圆, 张永恒, 肖烨子, 余有本. 茶树BZR1基因家族的鉴定及CsBZR1-5响应干旱胁迫的分子机理研究[J]. 茶叶科学, 2025, 45(1): 15-28. |
[2] | 朱倩, 邵陈禹, 周彪, 刘硕谦, 刘仲华, 田娜. 茶树ICE基因家族鉴定及CsICE43克隆和低温表达分析[J]. 茶叶科学, 2025, 45(1): 43-60. |
[3] | 徐文鸾, 温晓菊, 贾雨轩, 倪德江, 王明乐, 陈玉琼. 茶树果胶甲酯酶及其抑制子家族基因的鉴定及CsPME55参与氟胁迫响应的功能分析[J]. 茶叶科学, 2024, 44(6): 869-886. |
[4] | 杨楠, 李转, 刘玫辰, 马骏杰, 石云桃, 魏湘凝, 林阳顺, 毛宇源, 高水练. 钾营养对茶树EGCG生物合成的调控作用研究[J]. 茶叶科学, 2024, 44(6): 887-900. |
[5] | 赵茜, 刘倩, 蔡何佳奕, 何婕绮, 方筠雅, 刘雨欣, 陈超, 郑曜东, 张天经, 余文娟, 杨广. 干旱低温复合胁迫对茶树光合生理特性的影响及模拟预测[J]. 茶叶科学, 2024, 44(6): 901-916. |
[6] | 刘晓璐, 朱亚兰, 于敏, 盖新月, 范延艮, 孙平, 黄晓琴. 低温胁迫下茶树叶片细胞壁结构变化及光合特性[J]. 茶叶科学, 2024, 44(6): 917-927. |
[7] | 赵建诚, 倪惠菁, 王波, 蔡春菊, 杨振亚. 毛竹立竹密度对林下茶树生理生长和茶叶品质的影响[J]. 茶叶科学, 2024, 44(6): 928-940. |
[8] | 杨肖委, 沈强, 罗金龙, 张拓, 杨婷, 戴宇樵, 刘忠英, 李琴, 王家伦. 基于改进YOLOv8n的茶树嫩芽识别[J]. 茶叶科学, 2024, 44(6): 949-959. |
[9] | 鲁薇, 邬晓龙, 胡贤春, 郝勇, 刘春艳. 茶树接种AM真菌在干旱胁迫下的生理响应[J]. 茶叶科学, 2024, 44(5): 718-734. |
[10] | 刘昱, 杨培迪, 张培凯, 詹文礼, 李游, 姚苏航, 赵洋, 成杨, 刘振, 沈程文. 不同茶树品种叶片细胞壁氟富集差异探究[J]. 茶叶科学, 2024, 44(5): 735-746. |
[11] | 侯智炜, 吕永铭, 马宽, 张汇源, 顾哲, 张然, 李乐, 金俞谷, 苏祝成, 陈红平. 不同茶树品种的径山茶挥发性成分差异研究[J]. 茶叶科学, 2024, 44(5): 747-762. |
[12] | 陈世春, 江宏燕, 廖姝然, 陈亭旭, 牛金志, 王晓庆. 我国茶毛虫及其布尼亚病毒(EpBYV)的遗传多样性分析[J]. 茶叶科学, 2024, 44(5): 793-806. |
[13] | 王娟, 涂一怡, 吕务云, 陈易佳, 李士朴, 王玉春, 陈雅楠. 茶树一种新枝条枯萎病病原菌鉴定及防治药剂筛选[J]. 茶叶科学, 2024, 44(5): 807-815. |
[14] | 孙娟, 陈慧, 刘关华, 张瀚, 黄福印, 王玉玺, 王诺, 保德孟, 施江, 戴伟东, 陈健, 付建玉. 茶树γ-氨基丁酸代谢途径对早期茶尺蠖取食为害的响应[J]. 茶叶科学, 2024, 44(5): 816-830. |
[15] | 张亚真, 钟思彤, 陈志辉, 孔祥瑞, 单睿阳, 郑士琴, 余文权, 陈常颂. 不同黄化茶树种质中咖啡碱合成部位的研究[J]. 茶叶科学, 2024, 44(4): 575-584. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|