茶叶科学 ›› 2018, Vol. 38 ›› Issue (1): 20-32.doi: 10.13305/j.cnki.jts.2018.01.003
虞昕磊, 艾于杰, 曲凤凤, 艾仄宜, 刘淑媛, 陈玉琼, 倪德江*
收稿日期:
2017-04-05
修回日期:
2017-08-15
出版日期:
2018-02-15
发布日期:
2019-08-28
通讯作者:
*nidj@mail.hzau.edu.cn
作者简介:
虞昕磊,女,博士研究生,主要从事茶树代谢与分子生物学研究,jiayoualei@sina.com。
基金资助:
YU Xinlei, AI Yujie, QU Fengfeng, AI Zeyi, LIU Shuyuan, CHEN Yuqiong, NI Dejiang*
Received:
2017-04-05
Revised:
2017-08-15
Online:
2018-02-15
Published:
2019-08-28
摘要: 代谢组学作为系统生物学的一个重要分支,主要研究生物体系受内外环境扰动后(基因的改变或环境的变化)产生的小分子代谢物的变化,目前已被广泛应用于药理学、植物学、微生物学和食品安全等研究领域。近年茶树的代谢组研究也取得了突破性进展。本文就植物代谢组学技术在茶树生长发育、茶叶加工过程的品质形成、茶叶功能性评价等方面研究中的应用现状进行了综述。认为代谢组学技术将在茶叶品质形成及调控、茶树基因功能注释、茶树良种选育、揭示代谢网络调控机理等研究方面发挥不可替代的作用。
中图分类号:
虞昕磊, 艾于杰, 曲凤凤, 艾仄宜, 刘淑媛, 陈玉琼, 倪德江. 代谢组学在研究茶叶品质形成中的应用[J]. 茶叶科学, 2018, 38(1): 20-32. doi: 10.13305/j.cnki.jts.2018.01.003.
YU Xinlei, AI Yujie, QU Fengfeng, AI Zeyi, LIU Shuyuan, CHEN Yuqiong, NI Dejiang. Metabolomics Application in the Study of Tea Quality Formation[J]. Journal of Tea Science, 2018, 38(1): 20-32. doi: 10.13305/j.cnki.jts.2018.01.003.
[1] | Oliver F, Joachim K, Peter D, et al.Metabolite profiling for plant functional genomics[J]. Nature Biotechnology, 2000, 18(11): 1157-1161. |
[2] | Oliver F.Metabolomics—the link between genotypes and phenotypes[J]. Plant Molecular Biology, 2002(48): 155-171. |
[3] | 张丽, 姬厚伟, 黄锡娟, 等. 植物代谢组学及其在烟草上的应用进展[J]. 中国烟草学报, 2015, 21(5): 126-134. |
[4] | 尹恒, 李曙光, 白雪芳, 等. 植物代谢组学的研究方法及其应用[J]. 植物学通报, 2015, 22(5): 532-540. |
[5] | Josep R, Milena Z,Jana H.Advances in high-resolution mass spectrometry based on metabolomics studies for food—a review[J]. Food Additives & Contaminants: Part A, 2015, 32(10): 1685-1708. |
[6] | 漆小泉, 王玉兰, 陈晓亚. 植物代谢组学: 方法与应用[M]. 北京: 化学工业出版社, 2011: 9-11. |
[7] | Li C F, Yao M Z, Ma C L, et al.Differential metabolic profiles during the albescent stages of‘Anji Baicha’(Camellia sinensis)[J]. PLOS ONE, 2015(10): 1-18. |
[8] | Zhang Q F, Shi Y Z, Ma L F, et al.Metabolomic analysis using ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-Q-TOFMS) uncovers the effects of light intensity and temperature under shading treatments on the metabolites in tea[J]. PLOS ONE, 2014, 9(11): 1-10. |
[9] | Maria D, Antiochia R, Anatoly P, et al.Untargeted and targeted methodologies in the study of tea[J]. Food Research International, 2014(63): 275-289. |
[10] | 杨亦扬, 张佳, 王川丕, 等. 茶树鲜叶品质成分浸提方法比较及应用[J]. 茶叶科学, 2014, 34(2): 137-143. |
[11] | 许国旺, 张磊, 曾仲大, 等. 基于气相色谱-质谱联用与液相色谱-质谱联用的非靶向代谢组学用于3类茶叶中化学成分分析[J]. 色谱, 2014, 32(8): 804-816. |
[12] | Lee J E, Lee B J, Chung J O, et al.1H NMR-based metabolomic characterization during green tea(Camellia sinensis) fermentation[J]. Food Research International, 2011(44): 597-604. |
[13] | Makoto K, Kozo O, Hiroshi K, et al.Determination of dimethylsulfide in the head space vapor of green tea by gas chromatography[J]. Agricultural and Biological Chemistry, 1977, 41(11): 2285-2287. |
[14] | 陈亚东, 曹玉廷, 干宁, 等. 分子印迹固相萃取和电喷雾质谱法联用测定茶叶中四种儿茶素[J]. 茶叶科学, 2009, 29(3): 231-235. |
[15] | Yang T, Zhu Y, Shao C Y, et al.Enantiomeric analysis of linalool in teas using headspace solid-phase micro extraction with chiral gas chromatography[J]. Industrial Crops and Products, 2016(83): 17-23. |
[16] | 张佳, 王川丕, 阮建云. GC-MS及GC测定茶叶中主要游离氨基酸的方法研究[J]. 茶叶科学, 2010, 30(6): 445-452. |
[17] | Wipawee P, Taksehi B, Tsutomu Y, et al.Quality prediction of Japanese green tea using pyrolyzer coupled GC/MS based metabolic fingerprinting[J]. Journal of Agricultural and Food Chemistry, 2008, 56: 744-750. |
[18] | Christian S, Peter S.Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea quantitative differences between tea leaves and infusion[J]. Journal of Agricultural and Food Chemistry, 2006, 54: 916-924. |
[19] | Dong F, Yang Z Y, Susanne B, et al.Herbivore-induced volatiles from tea (Camellia sinensis) plants and their involvement in intraplant communication and changes in endogenous nonvolatile metabolites[J]. Journal of Agricultural and Food Chemistry, 2011, 59: 13131-13135. |
[20] | Viola S Y L, Dou J P, Ronald J Y C, et al. Massive accumulation of gallic acid and unique occurrence of myricetin, quercetin, and kaempferol in preparing old Oolong tea[J]. Journal of Agricultural and Food Chemistry, 2008, 56(17): 7950-7956. |
[21] | Alexandr Y Y, Boris V N, Emilie C, et al.Determination of the chemical composition of tea by chromatographic methods—a review[J]. Journal of Food Research, 2015, 4(3): 56-87. |
[22] | 张正竹, 宛晓春, 陶冠军. 茶鲜叶中糖苷类香气前体的液质联用分析[J]. 茶叶科学, 2005, 25(4): 275-281. |
[23] | Hitoshi I, Toshiyuki W, Yukiko K, et al.Quantitation of chafurosides A and B in tea leaves and isolation of prechafurosides A and B from Oolong tea leaves[J]. Journal of Agricultural and Food Chemistry, 2009, 57(15): 6779-6786. |
[24] | 赵燕, 丁立建. 核磁共振技术在植物代谢研究中的应用[J]. 现代仪器与医疗, 2013, 19(1): 21-24. |
[25] | Justin J J.H Moktar A, Fatma Y U?, et al. Structural annotation and elucidation of conjugated phenolic compounds in black, green, and white tea extracts[J]. Journal of Agricultural and Food Chemistry, 2012, 60: 8841-8850. |
[26] | Yue Y, Chu G X, Liu X S, et al.TMDB: a literature-curated database for small molecular compounds found from tea[J]. BMC Plant Biology, 2014, 14:243. DOI: 10.1186/s12870-014-0243-1. |
[27] | Liu J W, Zhang Q F, Liu M Y, et al.Metabolomic analyses reveal distinct change of metabolites and quality of green tea during the short duration of a single spring season[J]. Journal of Agricultural and Food Chemistry, 2016, 64: 3302-3309. |
[28] | Chao L, Cheng S, Zhang Y, et al.Transcriptomic, proteomic and metabolic changes in Arabidopsis thaliana leaves after the onset of illumination[J]. BMC Plant Biology, 2016(16): 43. DOI 10.1186/s12870-016-0726-3. |
[29] | Wen W W, Li D, Li X, et al.Metabolome-based genome-wide association study of maize kernel leads to novel biochemical metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights[J]. Nature Communications, 2014(2): 1-10. |
[30] | Chen W, Gao Y Q, Xie W B, et al.Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism[J]. Nature Genetics, 2014, 46(7): 714-720. |
[31] | Tai Y, Wei C, Yang H, et al.Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea(Camellia sinensis) compared with oil tea, 2015(15): 190. DOI: 10.1186/s12870-015-0574-6. |
[32] | Xia J G, Igor V S, Beomsoo H, et al.MetaboAnalyst 3.0-making metabolomics more meaningful[J]. Nucleic Acids Research, 2015(4): 1-7. |
[33] | Lee J E, Lee B J, Chung J O, et al.Geographical and climatic dependencies of green tea (Camellia sinensis) metabolites: A 1H NMR-based metabolomics study[J]. Journal of Agricultural and Food Chemistry, 2010, 58: 10582-10589. |
[34] | Lee J E, Lee B J, Hwang J, et al.Metabolic dependence of green tea on plucking positions revisited a metabolomic study[J]. Journal of Agricultural and Food Chemistry, 2011, 59: 10579-10585. |
[35] | Elis D P, Ieda S S, Romà T.Analytical investigation of secondary metabolites extracted from Camellia sinensis L. leaves using a HPLC-DAD-ESIMS data fusion strategy and chemometric methods[J]. Journal of Chemometrics, 2016, 30: 75-85. |
[36] | Dai W D, Qi D D, Yang T, et al.Nontargeted analysis using ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.)[J]. Journal of Agricultural and Food Chemistry, 2015, 63: 9869-9878. |
[37] | Too C J, Wanyoko K J, Kinyanjui T, et al.Effect of seasons on theanine levels in different Kenyan commercially released tea cultivars and its variation in different parts of the tea shoot[J]. Food and Nutrition Sciences, 2015, 6: 1450-1459. |
[38] | Feng L, Gao M J, Hou R Y, et al.Determination of quality constituents in the young leaves of albino tea cultivars[J]. Food Chemistry, 2014(155): 98-104. |
[39] | 杨亦扬, 马立锋, 黎星辉, 等. 氮素水平对茶树新梢叶片代谢谱及其昼夜变化的影响[J]. 茶叶科学, 2013, 33(6): 491-499. |
[40] | Xu Q S, Wang Y, Ding Z T, et al.Aluminum induced metabolic responses in two tea cultivars[J]. Plant Physiology and Biochemistry, 2016(101): 162-172. |
[41] | Kang M K, Jung N C, Jiyoung K, et al.Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.)[J]. Journal of Agricultural and Food Chemistry, 2010, 58: 418-426. |
[42] | Lee L S, Choi J H, Son N, et al.Metabolomic analysis of the effect of shade treatment on the nutritional and sensory qualities of green tea[J]. Journal of Agricultural and Food Chemistry, 2013(1): 113-121. |
[43] | Yang Z Y, Eiji K, Tsuyoshi K, et al.Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea(Camellia sinensis) plants in the dark[J]. Food Chemistry, 2012(135): 2268-2276. |
[44] | 刘晶晶,王富民,刘国峰,等. 茶树萜类香气物质代谢谱与相关基因表达谱时空变化的关系[J]. 园艺学报. 2014, 41(10): 2094-2106. |
[45] | Fu X M, Chen Y Y, Mei X1, et al. Regulation of formation of volatile compounds of tea(Camellia sinensis) leaves by single light wavelength[J]. Scientific Reports, 2015(11): 1-11. |
[46] | Lv H P, Dai W D, Tan J F, et al.Identification of the anthocyanins from the purple leaf coloured tea cultivar Zijuan(Camellia sinensis var. assamica) and characterization of their antioxidant activities[J]. Journal of Functional Foods, 2015(17): 449-458. |
[47] | Han Z X, Mohammad M R, Liu G F, et al.Green tea flavour determinants and their changes over manufacturing processes[J]. Food Chemistry, 2016(212): 739-748. |
[48] | Tsuyoshi K, Hisae K, Yumi K, et al.Characterisation of odorant compounds and their biochemical formation in green tea with a low temperature storage process[J]. Food Chemistry, 2014(148): 388-395. |
[49] | Youngmok K, Kevin L G, Jong D P, et al.Changes in antioxidant phytochemicals and volatile composition of Camellia sinensis by oxidation during tea fermentation[J]. Food Chemistry, 2011(129): 1331-1342. |
[50] | Tan J F, Dai W D, Ma Y L, et al.Study of the dynamic changes in the non-volatile chemical constituents of black tea during fermentation processing by a non-targeted metabolomics approach[J]. Food Research International, 2016(79): 106-113. |
[51] | Zhang L, Ning L, Yan Y C, et al.Development of the fingerprints of crude Puerh tea and ripened Puerh tea by high performance liquid chromatography[J]. Journal of Chinese Pharmaceutical Sciences, 2011(20): 352-359. |
[52] | Zhu Y, Lv H P, Dai W D, et al.Separation of aroma components in Xihu Longjing tea using simultaneous distillation extraction with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry[J]. Separation and Purification Technology, 2016(164): 146-154. |
[53] | Zhu Y, Shao C Y, Lv H P, et al.Enantiomeric and quantitative analysis of volatile terpenoids in different teas(Camellia sinensis)[J]. Journal of Chromatography A, 2017(1490): 177-190. |
[54] | Cui J L, Tsuyoshi K, Kojiro T, et al.Characteristic fluctuations in glycosidically bound volatiles during tea processing and identification of their unstable derivatives[J]. Journal of Agricultural and Food Chemistry, 2016, 64: 1151-1157. |
[55] | Lo Y H, Chen Y J, Chang C I, et al.Teaghrelins, unique acylated flavonoid tetraglycosides in Chin-shin Oolong tea, are putative oral agonists of the ghrelin receptor[J]. Journal of Agricultural and Food Chemistry, 2014, 62: 5085-5091. |
[56] | Dai W D, Tan J F, Lu M L, et al.Nontargeted modification-specific metabolomics investigation of glycosylated secondary metabolites in Tea (Camellia sinensis L.) based on liquid chromatography-high-resolution mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2016, 64: 6783-6790. |
[1] | 董圆, 张永恒, 肖烨子, 余有本. 茶树BZR1基因家族的鉴定及CsBZR1-5响应干旱胁迫的分子机理研究[J]. 茶叶科学, 2025, 45(1): 15-28. |
[2] | 朱倩, 邵陈禹, 周彪, 刘硕谦, 刘仲华, 田娜. 茶树ICE基因家族鉴定及CsICE43克隆和低温表达分析[J]. 茶叶科学, 2025, 45(1): 43-60. |
[3] | 徐文鸾, 温晓菊, 贾雨轩, 倪德江, 王明乐, 陈玉琼. 茶树果胶甲酯酶及其抑制子家族基因的鉴定及CsPME55参与氟胁迫响应的功能分析[J]. 茶叶科学, 2024, 44(6): 869-886. |
[4] | 杨楠, 李转, 刘玫辰, 马骏杰, 石云桃, 魏湘凝, 林阳顺, 毛宇源, 高水练. 钾营养对茶树EGCG生物合成的调控作用研究[J]. 茶叶科学, 2024, 44(6): 887-900. |
[5] | 赵茜, 刘倩, 蔡何佳奕, 何婕绮, 方筠雅, 刘雨欣, 陈超, 郑曜东, 张天经, 余文娟, 杨广. 干旱低温复合胁迫对茶树光合生理特性的影响及模拟预测[J]. 茶叶科学, 2024, 44(6): 901-916. |
[6] | 刘晓璐, 朱亚兰, 于敏, 盖新月, 范延艮, 孙平, 黄晓琴. 低温胁迫下茶树叶片细胞壁结构变化及光合特性[J]. 茶叶科学, 2024, 44(6): 917-927. |
[7] | 赵建诚, 倪惠菁, 王波, 蔡春菊, 杨振亚. 毛竹立竹密度对林下茶树生理生长和茶叶品质的影响[J]. 茶叶科学, 2024, 44(6): 928-940. |
[8] | 杨肖委, 沈强, 罗金龙, 张拓, 杨婷, 戴宇樵, 刘忠英, 李琴, 王家伦. 基于改进YOLOv8n的茶树嫩芽识别[J]. 茶叶科学, 2024, 44(6): 949-959. |
[9] | 鲁薇, 邬晓龙, 胡贤春, 郝勇, 刘春艳. 茶树接种AM真菌在干旱胁迫下的生理响应[J]. 茶叶科学, 2024, 44(5): 718-734. |
[10] | 刘昱, 杨培迪, 张培凯, 詹文礼, 李游, 姚苏航, 赵洋, 成杨, 刘振, 沈程文. 不同茶树品种叶片细胞壁氟富集差异探究[J]. 茶叶科学, 2024, 44(5): 735-746. |
[11] | 侯智炜, 吕永铭, 马宽, 张汇源, 顾哲, 张然, 李乐, 金俞谷, 苏祝成, 陈红平. 不同茶树品种的径山茶挥发性成分差异研究[J]. 茶叶科学, 2024, 44(5): 747-762. |
[12] | 陈世春, 江宏燕, 廖姝然, 陈亭旭, 牛金志, 王晓庆. 我国茶毛虫及其布尼亚病毒(EpBYV)的遗传多样性分析[J]. 茶叶科学, 2024, 44(5): 793-806. |
[13] | 王娟, 涂一怡, 吕务云, 陈易佳, 李士朴, 王玉春, 陈雅楠. 茶树一种新枝条枯萎病病原菌鉴定及防治药剂筛选[J]. 茶叶科学, 2024, 44(5): 807-815. |
[14] | 孙娟, 陈慧, 刘关华, 张瀚, 黄福印, 王玉玺, 王诺, 保德孟, 施江, 戴伟东, 陈健, 付建玉. 茶树γ-氨基丁酸代谢途径对早期茶尺蠖取食为害的响应[J]. 茶叶科学, 2024, 44(5): 816-830. |
[15] | 张亚真, 钟思彤, 陈志辉, 孔祥瑞, 单睿阳, 郑士琴, 余文权, 陈常颂. 不同黄化茶树种质中咖啡碱合成部位的研究[J]. 茶叶科学, 2024, 44(4): 575-584. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|