茶叶科学 ›› 2018, Vol. 38 ›› Issue (1): 102-111.doi: 10.13305/j.cnki.jts.2018.01.011
• • 上一篇
潘联云, 鹿颜, 龚雨顺*
收稿日期:
2017-06-29
修回日期:
2017-09-20
出版日期:
2018-02-15
发布日期:
2019-08-28
通讯作者:
*gongyushun@foxmail.com
作者简介:
潘联云,女,在读硕士研究生,主要从事茶叶加工及功能成分化学研究,jiayoualei@sina.com。
PAN Lianyun, LU Yan, GONG Yushun*
Received:
2017-06-29
Revised:
2017-09-20
Online:
2018-02-15
Published:
2019-08-28
摘要: 茶叶可调节不同组织的脂质代谢,抑制肠道消化吸收脂质,起到降脂减肥作用。茶叶对脂质代谢途径具有显著影响,主要通过调控固醇调节元件结合蛋白(Sterol Regulatory Element Binding Proteins)及其上下游因子表达,影响脂质合成和分解,从而降低脂肪积累。
中图分类号:
潘联云, 鹿颜, 龚雨顺. 茶叶调节SREBPs的降脂作用[J]. 茶叶科学, 2018, 38(1): 102-111. doi: 10.13305/j.cnki.jts.2018.01.011.
PAN Lianyun, LU Yan, GONG Yushun. The Mechanism of the Lipid-lowering Effect of Tea by Regulating the SREBP[J]. Journal of Tea Science, 2018, 38(1): 102-111. doi: 10.13305/j.cnki.jts.2018.01.011.
[1] | MOKDAD A H, FORD E S, BOWMAN B A, et al.Prevalence of obesity, diabetes, and obesity-related health risk factors[J]. Jama, 2003, 289(1): 76-79. |
[2] | FINUCANE M M, STEVENS G A, COWAN M J, et al.National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants[J]. The Lancet, 2011, 377(9765): 557-567. |
[3] | MOON H-S, LEE H-G, CHOI Y-J, et al.Proposed mechanisms of (-)-epigallocatechin-3-gallate for anti-obesity[J]. Chemico-biological Interactions, 2007, 167(2): 85-98. |
[4] | FUJITA H, YAMAGAMI T.Efficacy and safety of Chinese black tea (Pu-erh) extract in healthy and hypercholesterolemic subjects[J]. Annals of Nutrition and Metabolism, 2008, 53(1): 33-42. |
[5] | HOU Y, SHAO W, XIAO R, et al.Pu-erh tea aqueous extracts lower atherosclerotic risk factors in a rat hyperlipidemia model[J]. Experimental Gerontology, 2009, 44(6): 434-439. |
[6] | FUJITA H, YAMAGAMI T.Antihypercholesterolemic effect of Chinese black tea extract in human subjects with borderline hypercholesterolemia[J]. Nutrition Research, 2008, 28(7): 450-456. |
[7] | CAO Z H, GU D H, LIN Q Y, et al.Effect of Pu-erh tea on body fat and lipid profiles in rats with diet-induced obesity[J]. Phytotherapy Research, 2011, 25(2): 234-238. |
[8] | WOLFRAM S, WANG Y, THIELECKE F.Anti-obesity effects of green tea: from bedside to bench[J]. Molecular Nutrition & Food Research, 2006, 50(2): 176-187. |
[9] | HURSEL R, VIECHTBAUER W, WESTERTERP-PLANTENGA M.The effects of green tea on weight loss and weight maintenance: a meta-analysis[J]. International Journal of Obesity, 2009, 33(9): 956-961. |
[10] | KOVACS E M, LEJEUNE M P, NIJS I, et al.Effects of green tea on weight maintenance after body-weight loss[J]. British Journal of Nutrition, 2004, 91(3): 431-437. |
[11] | NAGAO T, HASE T, TOKIMITSU I.A green tea extract high in catechins reduces body fat and cardiovascular risks in humans[J]. Obesity, 2007, 15(6): 1473-1483. |
[12] | RAINS T M, AGARWAL S, MAKI K C.Antiobesity effects of green tea catechins: a mechanistic review[J]. The Journal of Nutritional Biochemistry, 2011, 22(1): 1-7. |
[13] | KHAN N, MUKHTAR H.Tea polyphenols for health promotion[J]. Life Sciences, 2007, 81(7): 519-533. |
[14] | ASHIDA H, FURUYASHIKI T, NAGAYASU H, et al.Anti-obesity actions of green tea: possible involvements in modulation of the glucose uptake system and suppression of the adipogenesis-related transcription factors[J]. Biofactors, 2004, 22(1/2/3/4): 135-140. |
[15] | SHIMAMURA Y, MIYUKI Y, SAKAKIBARA H, et al.Pu-erh tea suppresses diet-induced body fat accumulation in C57BL/6J mice by down-regulating SREBP-1c and related molecules[J]. Bioscience, Biotechnology, and Biochemistry, 2013, 77(7): 1455-1460. |
[16] | DING Y, ZOU X, JIANG X, et al.Pu-erh tea down-regulates sterol regulatory element-binding protein and stearyol-CoA desaturase to reduce fat storage in Caenorhaditis elegans[J]. PloS One, 2015, 10(2): e0113815. Doi:10.1371/journal.pone.0113815. |
[17] | PENG Y, XIONG Z, LI J, et al.Water extract of the fungi from Fuzhuan brick tea improves the beneficial function on inhibiting fat deposition[J]. International Journal of Food Sciences and Nutrition, 2014, 65(5): 610-614. |
[18] | HEBER D, ZHANG Y, YANG J, et al.Green tea, black tea, and oolong tea polyphenols reduce visceral fat and inflammation in mice fed high-fat, high-sucrose obesogenic diets[J]. The Journal of Nutrition, 2014, 144(9): 1385-1393. |
[19] | EGAWA T, HAMADA T, MA X, et al.Caffeine activates preferentially α1-isoform of 5′AMP‐activated protein kinase in rat skeletal muscle[J]. Acta Physiologica, 2011, 201(2): 227-238. |
[20] | SHRESTHA S, EHLERS S J, LEE J-Y, et al.Dietary green tea extract lowers plasma and hepatic triglycerides and decreases the expression of sterol regulatory element-binding protein-1c mRNA and its responsive genes in fructose-fed, ovariectomized rats[J]. The Journal of Nutrition, 2009, 139(4): 640-645. |
[21] | COLLINS Q F, LIU H-Y, PI J, et al.Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5’-AMP-activated protein kinase[J]. Journal of Biological Chemistry, 2007, 282(41): 30143-30149. |
[22] | YANG C S, ZHANG J, ZHANG L, et al.Mechanisms of body weight reduction and metabolic syndrome alleviation by tea[J]. Molecular Nutrition & Food Research, 2016, 60(1): 160-174. |
[23] | LEE L S, CHOI J H, SUNG M J, et al.Green tea changes serum and liver metabolomic profiles in mice with high-fat diet-induced obesity[J]. Molecular Nutrition & Food Research, 2015, 59(4): 784-794. |
[24] | MURASE T, HARAMIZU S, SHIMOTOYODOME A, et al.Reduction of diet-induced obesity by a combination of tea-catechin intake and regular swimming[J]. International Journal of Obesity, 2006, 30(3): 561-568. |
[25] | SHINICHI MEGURO T H, TADASHI HASE. Body fat accumulation in zebrafish is induced by a diet rich in fat and reduced by supplementation with green tea extract[J]. PloS One, 2015, 10(3): e0120142. Doi:10.1371/journal.pone.0120142. |
[26] | CUNHA C A, LIRA F S, ROSA NETO J C, et al. Green tea extract supplementation induces the lipolytic pathway, attenuates obesity, and reduces low-grade inflammation in mice fed a high-fat diet[J]. Mediators of Inflammation, 2013 (6778): 635470. Doi:org/10.1155/2013/635470. |
[27] | SANTAMARINA A B, OLIVEIRA J L, SILVA F P, et al.Green tea extract rich in epigallocatechin-3-gallate prevents fatty liver by AMPK activation via LKB1 in mice fed a high-fat diet[J]. PloS One, 2015, 10(11): e0141227. Doi:10.1371/journal.pone.0141227. |
[28] | YANG X, YIN L, LI T, et al.Green tea extracts reduce adipogenesis by decreasing expression of transcription factors C/EBPα and PPARγ[J]. International Journal of Clinical and Experimental Medicine, 2014, 7(12): 4906-4914. |
[29] | TIAN C, YE X, ZHANG R, et al.Green tea polyphenols reduced fat deposits in high fat-fed rats via erk1/2-PPARγ-adiponectin pathway[J]. PloS One, 2013, 8(1): e53796. Doi:10.1371/journal.pone.0053796. |
[30] | JANSSENS P L, HURSEL R, WESTERTERP-PLANTENGA M S. Long-term green tea extract supplementation does not affect fat absorption, resting energy expenditure, and body composition in adults[J]. The Journal of Nutrition, 2015, 145(5): 864-870. |
[31] | HUANG J, WANG Y, XIE Z, et al.The anti-obesity effects of green tea in human intervention and basic molecular studies[J]. European Journal of Clinical Nutrition, 2014, 68(10): 1075-1087. |
[32] | PAN MH, LAI CS, WANG H, et al.Black tea in chemo-prevention of cancer and other human diseases[J]. Food Science and Human Wellness, 2013, 2(1): 12-21. |
[33] | HUNG M W WL. Chemistry and health beneficial effects of oolong tea and theasinensins[J]. Food Science and Human Wellness, 2015, 4(4): 133-146. |
[34] | KOO S I, NOH S K.Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect[J]. The Journal of Nutritional Biochemistry, 2007, 18(3): 179-183. |
[35] | SHISHIKURA Y, KHOKHAR S, MURRAY B S.Effects of tea polyphenols on emulsification of olive oil in a small intestine model system[J]. Journal of Agricultural and Food Chemistry, 2006, 54(5): 1906-1913. |
[36] | WANG S, NOH S K, KOO S I.Epigallocatechin gallate and caffeine differentially inhibit the intestinal absorption of cholesterol and fat in ovariectomized rats[J]. The Journal of Nutrition, 2006, 136(11): 2791-2796. |
[37] | WANG S, NOH S K, KOO S I.Green tea catechins inhibit pancreatic phospholipase A2 and intestinal absorption of lipids in ovariectomized rats[J]. The Journal of Nutritional Biochemistry, 2006, 17(7): 492-498. |
[38] | NOH S K, KIM J, SEO Y, et al. Green tea (GT) extract lowers the lymphatic absorption of benzo [a] pyrene (BaP) in rats [J]. The FASEB Journal, 2008, 22(s1): 315.5-315. |
[39] | WOLFRAM S.Effects of green tea and EGCG on cardiovascular and metabolic health[J]. Journal of the American College of Nutrition, 2007, 26(4): 373-388. |
[40] | IKEDA I, YAMAHIRA T, KATO M, et al.Black tea polyphenols decrease micellar solubility of cholesterol in vitro and intestinal absorption of cholesterol in rats[J]. Journal of Agricultural and Food Chemistry, 2010, 58(15): 8591-8595. |
[41] | GROVE K A, SAE-TAN S, KENNETT M J, et al.(-)-Epigallocatechin-3-gallate inhibits pancreatic lipase and reduces body weight gain in high fat-fed obese mice[J]. Obesity, 2012, 20(11): 2311-2313. |
[42] | SEO D-B, JEONG H W, CHO D, et al.Fermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice[J]. Journal of Medicinal Food, 2015, 18(5): 549-556. |
[43] | SALWAY J G.Metabolism at a glance[M]. Wiley-Blackwell, 2016: 50-82. |
[44] | ASHRAFI K.Obesity and the regulation of fat metabolism[M]. WormBook, 2007: 1-20. Doi:10.1895/wormbook.1.7.1. |
[45] | KENNEDY L M, PHAM S C, GRISHOK A.Nonautonomous regulation of neuronal migration by insulin signaling, DAF-16/FOXO, and PAK-1[J]. Cell Reports, 2013, 4(5): 996-1009. |
[46] | SRINIVASAN S.Regulation of body fat in Caenorhabditis elegans[J]. Annual Review of Physiology, 2015, 77(1): 400-408. |
[47] | 张进. SREBP小分子调节剂的发现及其作用机制研究 [D]. 上海:华东师范大学, 2014. |
[48] | WATSON R T, KANZAKI M, PESSIN J E.Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes[J]. Endocrine reviews, 2004, 25(2): 177-204. |
[49] | AZZOUT-MARNICHE D, BÉCARD D, GUICHARD C, et al. Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes[J]. Biochemical Journal, 2000, 350(2): 389-393. |
[50] | LEE D, JEONG D-E, SON H G, et al.SREBP and MDT-15 protect C. elegans from glucose-induced accelerated aging by preventing accumulation of saturated fat[J]. Genes & Development, 2015, 29(23): 2490-2503. |
[51] | TAUBERT S, VAN GILST M R, HANSEN M, et al. A mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and-independent pathways in C elegans[J]. Genes & Development, 2006, 20(9): 1137-1149. |
[52] | VENABLES M C, HULSTON C J, COX H R, et al.Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans[J]. The American Journal of Clinical Nutrition, 2008, 87(3): 778-784. |
[53] | YANG F, VOUGHT B W, SATTERLEE J S, et al.An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis[J]. Nature, 2006, 442(7103): 700-704. |
[54] | ASHRAFI K.Mapping out starvation responses[J]. Cell Metabolism, 2006, 3(4): 235-236. |
[55] | FERRE P, FOUFELLE F.SREBP-1c transcription factor and lipid homeostasis: clinical perspective[J]. Hormone Research in Paediatrics, 2007, 68(2): 72-82. |
[56] | S HLE J, KNOTT A, HOLTZMANN U, et al. White tea extract induces lipolytic activity and inhibits adipogenesis in human subcutaneous (pre)-adipocytes[J]. Nutrition & Metabolism, 2009, 6(1): 20. Doi:10.1186/1743-7075-6-20. |
[57] | GREGOIRE F M.Adipocyte differentiation: from fibroblast to endocrine cell[J]. Experimental Biology and Medicine, 2001, 226(11): 997-1002. |
[58] | LIN J K, LIN-SHIAU S Y. Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols[J]. Molecular Nutrition & Food Research, 2006, 50(2): 211-217. |
[59] | KAO Y H, CHANG H H, LEE M J, et al.Tea, obesity, and diabetes[J]. Molecular Nutrition & Food Research, 2006, 50(2): 188-210. |
[60] | WOLFRAM S, RAEDERSTORFF D, PRELLER M, et al.Epigallocatechin gallate supplementation alleviates diabetes in rodents[J]. The Journal of Nutrition, 2006, 136(10): 2512-2518. |
[61] | WOLFRAM S, RAEDERSTORFF D, WANG Y, et al.TEAVIGOTM (epigallocatechin gallate) supplementation prevents obesity in rodents by reducing adipose tissue mass[J]. Annals of Nutrition and Metabolism, 2005, 49(1): 54-63. |
[62] | CHEN N, BEZZINA R, HINCH E, et al.Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet[J]. Nutrition Research, 2009, 29(11): 784-793. |
[63] | BASCIANO H, FEDERICO L, ADELI K.Fructose, insulin resistance, and metabolic dyslipidemia[J]. Nutrition & Metabolism, 2005, 2(1): 5. Doi:10.1186/1743-7075-2-5. |
[64] | RUTLEDGE A C, ADELI K.Fructose and the metabolic syndrome: pathophysiology and molecular mechanisms[J]. Nutrition Reviews, 2007, 65(suppl 1): S13-S23. |
[65] | 吕海鹏, 谷记平, 林智, 等. 普洱茶的化学成分及生物活性研究进展[J]. 茶叶科学, 2007, 27(1): 8-18. |
[66] | YANG D-J, HWANG L S.Study on the conversion of three natural statins from lactone forms to their corresponding hydroxy acid forms and their determination in Pu-Erh tea[J]. Journal of Chromatography A, 2006, 1119(1): 277-284. |
[67] | 陈智雄, 齐桂年, 邹瑶, 等. 黑茶调节脂质代谢的物质基础及机理研究进展[J]. 茶叶科学, 2013, 33(3): 242-252. |
[68] | KUHN D J, BURNS A C, KAZI A, et al.Direct inhibition of the ubiquitin-proteasome pathway by ester bond-containing green tea polyphenols is associated with increased expression of sterol regulatory element-binding protein 2 and LDL receptor[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2004, 1682(1): 1-10. |
[69] | KAUL D, SIKAND K, SHUKLA A.Effect of green tea polyphenols on the genes with atherosclerotic potential[J]. Phytotherapy Research, 2004, 18(2): 177-179. |
[70] | HARDIE D G.AMPK: positive and negative regulation, and its role in whole-body energy homeostasis[J]. Current Opinion in Cell Biology, 2015, 33: 1-7. |
[71] | XIAO B, SANDERS M J, UNDERWOOD E, et al.Structure of mammalian AMPK and its regulation by ADP[J]. Nature, 2011, 472(7342): 230-233. |
[72] | ZHOU J, FARAH B L, SINHA R A, et al.Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance[J]. PloS One, 2014, 9(1): e87161. Doi:10.1371/journal.pone.0087161. |
[73] | WAY T-D, LIN H-Y, KUO D-H, et al.Pu-erh tea attenuates hyperlipogenesis and induces hepatoma cells growth arrest through activating AMP-activated protein kinase (AMPK) in human HepG2 cells[J]. Journal of Agricultural and Food Chemistry, 2009, 57(12): 5257-5264. |
[74] | HUANG H-C, LIN J-K.Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet[J]. Food & Function, 2012, 3(2): 170-177. |
[75] | LONG Y C, ZIERATH J R.AMP-activated protein kinase signaling in metabolic regulation[J]. The Journal of Clinical Investigation, 2006, 116(7): 1776-1783. |
[76] | HARDIE D G, ROSS F A, HAWLEY S A.AMPK: a nutrient and energy sensor that maintains energy homeostasis[J]. Nature Reviews Molecular Cell Biology, 2012, 13(4): 251-262. |
[77] | 傅冬和, 刘仲华, 黄建安, 等. 茯砖茶降脂功能成分研究[J]. 茶叶科学, 2012, 32(3): 217-223. |
[78] | WANG S, MOUSTAID-MOUSSA N, CHEN L, et al.Novel insights of dietary polyphenols and obesity[J]. The Journal of Nutritional Biochemistry, 2014, 25(1): 1-18. |
[79] | CAO H, HININGER-FAVIER I, KELLY M A, et al.Green tea polyphenol extract regulates the expression of genes involved in glucose uptake and insulin signaling in rats fed a high fructose diet[J]. Journal of Agricultural and Food Chemistry, 2007, 55(15): 6372-6378. |
[80] | WATTS J L.Genetic dissection of polyunsaturated fatty acid synthesis in caenorhabditis elegans[C]. Proceedings of the National Academy of Sciences, 2002, 99(9): 5854-5859. |
[81] | KNIAZEVA M, CRAWFORD Q T, SEIBER M, et al.Monomethyl branched-chain fatty acids play an essential role in caenorhabditis elegans development[J]. PLoS Biology, 2004, 2(9): e257. |
[82] | HODSON L, FIELDING B A.Stearoyl-CoA desaturase: rogue or innocent bystander?[J]. Progress in Lipid Research, 2013, 52(1): 15-42. |
[83] | NTAMBI J M, MIYAZAKI M.Regulation of stearoyl-CoA desaturases and role in metabolism[J]. Progress in Lipid Research, 2004, 43(2): 91-104. |
[84] | JEON T-I, OSBORNE T F.SREBPs: metabolic integrators in physiology and metabolism[J]. Trends in Endocrinology & Metabolism, 2012, 23(2): 65-72. |
[85] | BROCK T J, WATTS J L.Fatty acid desaturation and the regulation of adiposity in caenorhabditis elegans[J]. Genetics, 2007, 176(2): 865-875. |
[86] | NTAMBI J M, MIYAZAKI M, STOEHR J P, et al.Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity[C]. Proceedings of the National Academy of Sciences, 2002, 99(17): 11482-11486. |
[87] | BROCK T J, WATTS J L.Genetic regulation of unsaturated fatty acid composition in C. elegans[J]. PLoS Genetics, 2006, 2(7): e108. Doi:10.1371/journal.pgen.0020108. |
[88] | VAN GILST M R, HADJIVASSILIOU H, JOLLY A, et al. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans[J]. PLoS Biol, 2005, 3(2): e53. Doi:10.1371/journal.pbio.0030053. |
[89] | LIANG B, FERGUSON K, KADYK L, et al.The role of nuclear receptor NHR-64 in fat storage regulation in caenorhabditis elegans[J]. PloS One, 2010, 5(3): e9869. Doi:10.1371/journal.pone.0009869. |
[1] | 王留彬, 黄丽蕴, 滕翠琴, 吴立赟, 成浩, 于翠平, 王丽鸳. 梧州茶树种质资源的遗传多样性及亲缘关系分析[J]. 茶叶科学, 2022, 42(5): 601-609. |
[2] | 高健健, 陈丹, 彭佳堃, 吴文亮, 蔡良绥, 蔡亚威, 田军, 万云龙, 孙威江, 黄艳, 王哲, 林智, 戴伟东. 基于代谢组学的云南白茶与福鼎白茶化学成分比较分析[J]. 茶叶科学, 2022, 42(5): 623-637. |
[3] | 周汉琛, 杨霁虹, 徐玉婕, 吴琼, 雷攀登. 香叶醇生物合成相关基因NUDX1的进化分析[J]. 茶叶科学, 2022, 42(5): 638-648. |
[4] | 陈琪予, 马建强, 陈杰丹, 陈亮. 利用图像特征分析茶树成熟叶表型的遗传多样性[J]. 茶叶科学, 2022, 42(5): 649-660. |
[5] | 李艳春, 汪航, 李兆伟, 叶菁, 王义祥. 几种改良措施对酸化茶园土壤理化性质和微生物群落结构的影响[J]. 茶叶科学, 2022, 42(5): 661-671. |
[6] | 孙悦, 吴俊, 韦朝领, 刘梦月, 高晨曦, 张灵枝, 曹士先, 余顺甜, 金珊, 孙威江. 抗小贯松村叶蝉和茶棍蓟马的茶树种质筛选及其抗性相关因素分析[J]. 茶叶科学, 2022, 42(5): 689-704. |
[7] | 陈宇宏, 高颖, 韩震, 尹军峰. 不同种质茶叶籽皂素含量及组成分析[J]. 茶叶科学, 2022, 42(5): 705-716. |
[8] | 陈慧, 杨丽玲, 陈金华, 黄建安, 龚雨顺, 李适. 控温渥堆对黑毛茶香气品质的影响[J]. 茶叶科学, 2022, 42(5): 717-730. |
[9] | 李峥, 刘锭, 霍增辉, 陈富桥. 中国与RCEP成员国茶叶贸易竞争性与互补性分析[J]. 茶叶科学, 2022, 42(5): 740-752. |
[10] | 俞蓉欣, 郑芹芹, 陈红平, 张劲松, 张相春. 儿茶素生物医用纳米材料研究进展[J]. 茶叶科学, 2022, 42(4): 447-462. |
[11] | 王玉源, 刘任坚, 刘少群, 舒灿伟, 孙彬妹, 郑鹏. 茶树R2R3-MYB转录因子CsTT2表达分析及功能初步鉴定[J]. 茶叶科学, 2022, 42(4): 463-476. |
[12] | 李晶, 林彩容, 黄艳, 邓旭铭, 王艺清, 孙威江. 茶多酚对农杆菌介导的植物遗传转化体系的影响[J]. 茶叶科学, 2022, 42(4): 477-490. |
[13] | 赵东伟. 大叶茶(Camellia sinensis var. assamica)的命名、模式及自然分布[J]. 茶叶科学, 2022, 42(4): 491-499. |
[14] | 刘建军, 张金玉, 彭叶, 刘晓博, 杨云, 黄涛, 温贝贝, 李美凤. 不同光质摊青对夏秋茶树鲜叶挥发性物质及其绿茶品质影响研究[J]. 茶叶科学, 2022, 42(4): 500-514. |
[15] | 汪为通, 周孝贵, 张欣欣, 王志博, 张大羽, 肖强. 条纹蝇虎对灰茶尺蠖幼虫的捕食作用[J]. 茶叶科学, 2022, 42(4): 515-524. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|