[1] |
Hilton P J, Palmer Jones R, Ellis R T.Effects of season and nitrogen fertiliser upon the flavanol composition and tea making quality of fresh shoots of tea (Camellia sinensis L.) in Central Africa[J]. Journal of the Science of Food Agriculture, 2010, 24(7): 819-826.
|
[2] |
张振梅, 石元值, 马立锋, 等. 采摘标准与施氮水平对茶树春茶产量、品质及氮素利用的影响[J]. 茶叶科学, 2014, 34(5): 506-514.
|
[3] |
马立锋, 苏孔武, 黎金兰, 等. 控释氮肥对茶叶产量、品质和氮素利用效率及经济效益的影响[J]. 茶叶科学, 2015, 35(4): 354-362.
|
[4] |
阮建云, 吴洵, 石元值, 等. 中国典型茶区养分投入与施肥效应[J]. 土壤肥料, 2001(5): 9-13.
|
[5] |
吴询, 茹国敏. 茶树对氮肥的吸收和利用[J]. 茶叶科学, 1986, 6(2): 15-24.
|
[6] |
Qin P, Qi Y C, Dong Y S, et a1. Soil nitrous oxide emissions from a typical semiarid temperate steppe in inner Mongolia: effects of mineral nitrogen fertilizer levels and forms[J]. Plant Soil, 2011, 342: 345-357.
|
[7] |
刘宗岸, 杨京平, 杨正超, 等. 苕溪流域茶园不同种植模式下地表径流氮磷流失特征[J]. 水土保持学报, 2012, 26(2): 29-32.
|
[8] |
王峰, 陈玉真, 吴志丹, 等. 酸性茶园土壤氨挥发及其影响因素研究[J]. 农业环境科学学报, 2016, 35(4): 808-816.
|
[9] |
Zwieten L V, Kimber S, Morris S, et al.Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2010, 327(1): 235-246.
|
[10] |
Yao Y, Gao B, Zhang M, et al.Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil[J]. Chemosphere, 2012, 89(11): 1467-1471.
|
[11] |
Clough T J, Condron L M, Kammann C, et al.A Review of Biochar and Soil Nitrogen Dynamics[J]. Agronomy, 2013, 3(2): 275-293.
|
[12] |
俞映倞, 薛利红, 杨林章, 等. 生物炭添加对酸化土壤中小白菜氮素利用的影响[J]. 土壤学报, 2015, 52(4): 759-767.
|
[13] |
张爱平, 刘汝亮, 高霁, 等. 生物炭对宁夏引黄灌区水稻产量及氮素利用率的影响[J]. 植物营养与肥料学报, 2015, 21(5): 1352-1360.
|
[14] |
曲晶晶, 郑金伟, 郑聚锋, 等. 小麦秸秆生物黑炭对水稻产量及晚稻氮素利用率的影响[J]. 生态与农村环境学报, 2012, 28(3): 288-293.
|
[15] |
Zhang A, Bian R, Pan G, et al.Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles[J]. Field Crops Research, 2012, 127: 153-160.
|
[16] |
Li B, Bi Z, Xiong Z.Dynamic responses of nitrous oxide emission and nitrogen use efficiency to nitrogen and biochar amendment in an intensified vegetable field in southeastern China[J]. Global Change Biology Bioenergy, 2017, 9(2): 400-413.
|
[17] |
Zhu Q, Peng X, Huang T.Contrasted effects of biochar on maize growth and N use efficiency depending on soil conditions[J]. International Agrophysics, 2016, 29(2): 257-266.
|
[18] |
Zhu Q H, Peng X H, Huang T Q, et al.Effect of biochar addition on maize growth and nitrogen use efficiency in acidic red soils[J]. Pedosphere, 2014, 24(6): 699-708.
|
[19] |
吴志丹, 尤志明, 江福英, 等. 生物黑炭对酸化茶园土壤的改良效果[J]. 福建农业学报, 2012, 27(2): 167-172.
|
[20] |
王朝辉, 刘学军, 巨晓棠. 田间土壤氨挥发的原位测定-通气法[J]. 植物营养与肥料学报, 2002, 8(2): 205-209.
|
[21] |
李露, 周自强, 潘晓健, 等.不同时期施用生物炭对稻田N2O和CH4排放的影响[J]. 土壤学报, 2015(4): 839-848.
|
[22] |
萧自位, 王丽娟, 毛加梅, 等. 西双版纳不同林茶复合生态系统碳储量[J]. 生态学杂志, 2012, 31(7): 1617-1625.
|
[23] |
曼如, 束怀瑞, 周宏伟. 苹果氮素营养研究Ⅳ.贮藏15N的运转、分配特性[J]. 园艺学报, 1986, 13(1): 23-30.
|
[24] |
Sun H, Zhang H, Min J, et al.Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater[J]. Paddy Water Environment, 2016, 14(1): 105-111.
|
[25] |
Wu F, Jia Z, Wang S, et al.Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil[J]. Biology and fertility of soils, 2013, 49(5): 555-565.
|
[26] |
Han W, Xu J, Wei K, et al.Estimation of N2O emission from tea garden soils, their adjacent vegetable garden and forest soils in eastern China[J]. Environmental Earth Sciences, 2013, 70(6): 2495-2500.
|
[27] |
Fu X Q, Li Y, Su W J, et al.Annual dynamics of N2O emissions from a tea field in southern subtropical China[J]. Plant Soil Environment, 2012, 58(8): 373-378.
|
[28] |
Hou M, Ohkama-Ohtsu N, Suzuki S, et al.Nitrous oxide emission from tea soil under different fertilizer managements in Japan[J]. Catena, 2015, 135: 304-312.
|
[29] |
Fu X, Liu X, Li Y, et al.Wet-season spatial variability in N2O emissions from a tea field in subtropical central China[J]. Biogeosciences Discussions, 2015, 12(2): 1475-1508.
|
[30] |
尹昌, 范分良, 李兆君, 等. 长期施用有机和无机肥对黑土nirS型反硝化菌种群结构和丰度的影响[J]. 环境科学, 2012, 33(11): 3967-3975.
|
[31] |
张婧, 夏光利, 李虎, 等. 一次性施肥技术对冬小麦/夏玉米轮作系统土壤N2O排放的影响[J]. 农业环境科学学报, 2016, 35(1): 195-204.
|
[32] |
Yao Z, Zheng X, Dong H, et al.A 3-year record of N2O and CH4 emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates[J]. Agriculture Ecosystems & Environment, 2012, 152(3): 1-9.
|
[33] |
王峰, 陈玉真, 吴志丹, 等. 施用生物质炭对酸性茶园土壤氨挥发的影响[J]. 茶叶科学, 2017, 37(1): 60-70.
|
[34] |
Kastner J R, Miller J, Das K.Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars[J]. Journal of Hazardous Materials, 2009, 164(2): 1420-1427.
|
[35] |
Wang J, Chen Z, Xiong Z, et al.Effects of biochar amendment on greenhouse gas emissions, net ecosystem carbon budget and properties of an acidic soil under intensive vegetable production[J]. Soil Use and Management, 2015, 31(3): 375-383.
|
[36] |
陈玉真, 王峰, 尤志明, 等. 添加生物黑炭对茶园土壤CO2、N2O排放的影响[J]. 农业环境科学学报, 2015, 34(5): 1009-1016.
|
[37] |
Cayuela M L, Jeffery S, van Zwieten L. The molar H: Corg ratio of biochar is a key factor in mitigating N2O emissions from soil[J]. Agriculture, Ecosystems Environment, 2015, 202: 135-138.
|
[38] |
Dempster D N, Gleeson D B, Solaiman Z M, et al.Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil[J]. Plant Soil, 2012, 354(1): 311-324.
|
[39] |
Zwieten L V, Singh B P, Kimber S W L, et al. An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application[J]. Agriculture Ecosystems Environment, 2014, 191: 53-62.
|
[40] |
Jaiswal A K, Elad Y, Graber E R, et al.Rhizoctonia solani, suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration[J]. Soil Biology Biochemistry, 2014, 69(1): 110-118.
|
[41] |
Viger M, Hancock R D, Miglietta F, et al.More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar[J]. Global Change Biology Bioenergy, 2015, 7(4): 658-672.
|
[42] |
马立锋. 茶树氮素吸收利用与氮肥施用技术研究[D]. 北京: 中国农业科学院, 2015: 33-36.
|
[43] |
张伟明, 管学超, 黄玉威, 等. 生物炭与化学肥料互作的大豆生物学效应[J]. 作物学报, 2015, 41(1): 109-122.
|
[44] |
刘玉学. 生物质炭输入对土壤氮素流失及温室气体排放特性的影响[D]. 杭州: 浙江大学, 2011: 81-82.
|
[45] |
张万杰, 李志芳, 张庆忠, 等. 生物质炭和氮肥配施对菠菜产量和硝酸盐含量的影响[J]. 农业环境科学学报, 2011, 30(10): 1946-1952.
|
[46] |
袁晶晶, 同延安, 卢绍辉, 等. 生物炭与氮肥配施对土壤肥力及红枣产量、品质的影响[J]. 植物营养与肥料学报, 2017, 23(2): 468-475.
|
[47] |
李琦, 马莉, 赵跃, 等. 不同温度制备的棉花秸秆生物碳对棉花生长及氮肥利用率(15N)的影响[J]. 植物营养与肥料学报, 2015, 21(3): 600-607.
|
[48] |
苏有健, 廖万有, 丁勇, 等. 不同氮营养水平对茶叶产量和品质的影响[J]. 植物营养与肥料学报, 2011, 17(6): 1430-1436.
|
[49] |
葛顺峰, 姜远茂, 魏绍冲, 等. 不同供氮水平下幼龄苹果园氮素去向初探[J]. 植物营养与肥料学报, 2011, 17(4): 949-955.
|