Journal of Tea Science ›› 2018, Vol. 38 ›› Issue (6): 547-558.doi: 10.13305/j.cnki.jts.2018.06.001
KONG Lei, ZHU Xiangxiang, WANG Yiwei, XIE Xiaofang, JIANG Changjun, LI Yeyun*
Received:
2018-03-07
Revised:
2018-03-29
Online:
2018-12-15
Published:
2019-12-15
CLC Number:
KONG Lei, ZHU Xiangxiang, WANG Yiwei, XIE Xiaofang, JIANG Changjun, LI Yeyun. Identification and Expression Analysis of Tea Plant (Camellia sinesis) miR164a and Its Target Gene[J]. Journal of Tea Science, 2018, 38(6): 547-558.
[1] | Bartel D P.MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297. |
[2] | 谢小芳. 茶树miRNA靶基因的鉴定及在低温胁迫下的表达分析[D]. 合肥: 安徽农业大学, 2016. |
[3] | 牟桂萍, 纪春艳, 许东林, 等. 植物miR164家族研究进展[J]. 生命科学, 2013, 25(5): 532-538. |
[4] | 王浩然, 李爽爽, 乐丽娜, 等. miR164a及其靶基因PeNAC1相互作用研究[J]. 南京林业大学学报(自然科学版), 2016, 40(5): 29-33. |
[5] | Guo H S, Xie Q, Fei J F, et al.MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development[J]. Plant Cell, 2005, 17(5): 1376-1386. |
[6] | Válóczi A, Várallyay É, Kauppinen S, et al.Spatio-temporal accumulation of microRNAs is highly coordinated in developing plant tissues[J]. Plant Journal, 2006, 47(1): 140-151. |
[7] | Lu S, Sun YH, Shi R, et al.Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis[J]. Plant Cell, 2005, 17(8): 2186-2203. |
[8] | 孙宗艳. 盐/干旱胁迫下甜菜幼苗中miR160/164及其靶基因的表达与分析[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
[9] | 彭辉, 于兴旺, 成慧颖, 等. 植物NAC转录因子家族研究概况[J]. 植物学报, 2010, 45(2): 236-248. |
[10] | 孙利军, 李大勇, 张慧娟, 等. NAC转录因子在植物抗病和抗非生物胁迫反应中的作用[J]. 遗传, 2012, 34(8): 993-1002. |
[11] | Olsen A N, Ernst H A, Leggio L L, et al.NAC transcription factors: structurally distinct, functionally diverse[J]. Trends in Plant Science, 2005, 10(2): 79-87. |
[12] | Nakashima K, Takasaki H, Mizoi J, et al.NAC transcription factors in plant abiotic stress responses[J]. Biochimica et Biophysica Acta, 2012, 1819(2): 97-103. |
[13] | Fang Y, Xie K, Xiong L.Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice[J]. Journal of Experimental Botany, 2014, 65(8): 2119-2135. |
[14] | Puranik S, Sahu PP, Srivastava PS, et al.NAC proteins: regulation and role in stress tolerance[J]. Trends in plant science, 2012, 17(6): 369-381. |
[15] | Fujita M, Fujita Y, Maruyama K, et al.A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway[J]. The Plant Journal, 2004, 39(6): 863-876. |
[16] | Yoo S Y, Kim Y, Kim S Y, et al.Control of flowering time and cold response by a NAC-domain protein in Arabidopsis[J]. Plos One, 2007, 2(7): e642. DOI: 10.1371/ journal.pone.0000642. |
[17] | Honghong Hu, Mingqiu Dai, Jialing Yao, et al.Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(35): 12987-12992. |
[18] | Laufs P, Peaucelle A, Morin H, et al.MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems[J]. Development, 2004, 131(17): 4311-4322. |
[19] | Kim J H, Woo H R, Kim J, et al.Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis[J]. Science, 2009, 323(5917): 1053-1057. |
[20] | Kaur A, Gupta O P, Meena N L, et al.Comparative temporal expression analysis of microRNAs and their target genes in contrasting wheat genotypes during osmotic stress[J]. Applied Biochemistry & Biotechnology, 2017, 181(2): 613-626. |
[21] | Lu X, Dun H, Lian C, et al.The role of peu-miR164 and its target PeNAC genes in response to abiotic stress in Populus euphratica[J]. Plant Physiology & Biochemistry Ppb, 2017, 115: 418-438. |
[22] | 王永鑫, 刘志薇, 吴致君, 等. 茶树中2个NAC转录因子基因的克隆及温度胁迫的响应[J]. 西北植物学报, 2015, 35(11): 2148-2156. |
[23] | Zhang Y, Zhu X, Chen X, et al. Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) andtheir targets using high-throughput sequencing and degradome analysis [J]. Bmc Plant Biology, 2014, 14(1): 271. https://doi.org/10.1186/s12870-014-0271-x. |
[24] | Zheng C, Zhao L, Wang Y, et al. Integrated RNA-Seq and sRNA-Seq analysis identifies chilling and freezing responsive key molecular players and pathways in tea plant (Camellia sinensis) [J]. Plos One, 2015, 10(4): e0125031. https://doi.org/10.1371/journal.pone.0125031. |
[25] | 刘亚芹, 田坤红, 孙琪璐, 等. 茶树miR156a靶基因SPL6和SPL9的克隆及表达分析[J]. 茶叶科学, 2017, 37(6): 551-564. |
[26] | 顾冕, 孟大千, 徐国华. 烟草microRNA827及其靶基因的鉴定与分析[J]. 南京农业大学学报, 2016, 39(6): 965-972. |
[27] | Fang Y, Xie K, Xiong L.Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice[J]. Journal of Experimental Botany, 2014, 65(8): 2119-2135. |
[28] | Varkonyi-Gasic E, Hellens R P. qRT-PCR of small RNAs[J]. Methods in Molecular Biology, 2010, 631:109-122. |
[29] | 谢小芳, 添先凤, 江昌俊, 等. 茶树低温胁迫下microRNA实时定量PCR内参基因的筛选[J]. 茶叶科学, 2015, 35(6): 596-604. |
[30] | Hao X, Horvath D P, Chao W S, et al.Identification and evaluation of reliable reference genes for quantitative real-time pcr analysis in tea plant (Camellia sinensis (L.) O. Kuntze)[J]. International Journal of Molecular Sciences, 2014, 15(12):22155-22172. |
[31] | Zhang B H, Pan X P, Cox S B, et al.Evidence that miRNAs are different from other RNAs[J]. Cellular & Molecular Life Sciences Cmls, 2006, 63(2): 246-254. |
[32] | Wang Y X, Liu Z W, Wu Z J, et al.Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L.) O. Kuntze][J]. Plos One, 2016, 11(11): e0166727. DOI: 10.1371/journal.pone.0166727. |
[33] | 吴骏, 张俊红, 黄蒙慧, 等. 光皮桦miR164及其靶基因NAC1在低氮胁迫中的表达分析[J]. 遗传, 2016, 38(2): 155-162. |
[34] | Guleria P, Yadav S K.Identification of miR414 and expression analysis of conserved miRNAs from stevia rebaudiana[J]. Genomics, Proteomics & Bioinformatics, 2011, 9(6): 211-217. |
[35] | 王丽丽, 赵韩生, 孙化雨, 等. 胁迫条件下毛竹miR164b及其靶基因PeNAC1表达研究[J]. 林业科学研究, 2015, 28(5): 605-611. |
[36] | 罗中钦. 大豆逆境胁迫相关microRNA的发掘与验证[D]. 北京: 中国农业科学院, 2012. |
[37] | 孙润泽, 侯琦, 章文乐, 等. 甜杨低温响应microRNAs的克隆与分析[J]. 基因组学与应用生物学, 2011, 30(2): 204-211. |
[38] | Gupta O P, Meena N L, Sharma I, et al.Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat[J]. Molecular Biology Reports, 2014, 41(7): 4623-4629. |
[1] | ZHAO Dongwei. Nomenclature, Typification, and Natural Distribution of Camellia sinensis var. assamica (Theaceae) [J]. Journal of Tea Science, 2022, 42(4): 491-499. |
[2] | CHEN Siwen, KANG Rui, GUO Zhiyuan, ZHOU Qiongqiong, FENG Jiancan. Cloning and Expression Analysis of CsCML16 in Tea Plants (Camellia sinensis) under Low Temperature Stress [J]. Journal of Tea Science, 2021, 41(3): 315-326. |
[3] | YAN Fei, JIANG Wenhua, QU Dong, FU Jing, ZHAO Xuan. Effects of Exogenous 5-aminolevulinic Acid on Photosynthetic and Physiological Characteristics of Tea Plants under Low Temperature Stress [J]. Journal of Tea Science, 2020, 40(5): 597-606. |
[4] | CHANG Yali, HUANG Xiaobing, JIANG Shuangfeng, HUANG Shuangjie, SUN Mufang, LIU Wei, GUO Guiyi. Analysis of Fat Content and Fatty Acid Composition and Absolute Content in the Tea Seeds from Southern Henan Tea Germplasms [J]. Journal of Tea Science, 2020, 40(3): 352-362. |
[5] | CHEN Linbo, XIA Lifei, LIU Yue, SUN Yunnan, JIANG Huibing, TIAN Yiping, CHEN Liang. Screening of miRNA Related to Anthocyanin Synthesis in Tea Cultivar ‘Zijuan’ Based on High Throughput Sequencing [J]. Journal of Tea Science, 2019, 39(6): 681-691. |
[6] | WANG Yingzi, LI Yinhua, CHEN Jinhua, LIU Zhonghua, HUANG Jian'an. Effects of Exogenous Nitric Oxide on Physiological Characteristics of Tea Plants Under Cold Stress [J]. Journal of Tea Science, 2019, 39(3): 335-341. |
[7] | LI Hui, HUANG Wei, LIU Zhiwei, WANG Yongxin, WU Zhijun, ZHUANG Jing. Isolation and Expression Analysis of Two Temperature Responsive Dof Genes from Camellia sinensis [J]. Journal of Tea Science, 2016, 36(3): 312-322. |
[8] | LIU Zhiwei, XIONG Yangyang, LI Tong, YAN Yajun, HAN Hongrun, WU Zhijun, ZHUANG Jing. The Cloning of Transcription Factor Gene CsDREB-A4 and The Response to Temperature Stress in Camellia sinensis [J]. Journal of Tea Science, 2015, 35(1): 24-34. |
[9] | WANG Li-yuan, ZHANG Cheng-cai, CHENG Hao, WEI Kang. Characterization of EST-derived SNPs and Development of SNP-markers in Tea (Camellia sinensis) [J]. Journal of Tea Science, 2012, 32(4): 369-376. |
[10] | CHEN Sheng-xiang, QI Gui-nian, XIA Jian-bing, ZOU Yao, SHAN Hong-li. mRNA Differential Expressionof Camellia sinensis under Drought Conditions [J]. Journal of Tea Science, 2012, 32(1): 53-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|