Journal of Tea Science ›› 2018, Vol. 38 ›› Issue (6): 580-588.doi: 10.13305/j.cnki.jts.2018.06.004
Previous Articles Next Articles
ZHENG Shizhong1,2, JIANG Shengtao1,2, LIU Wei1,2, CHEN Meixia1,2, LIN Yuling3, LAI Zhongxiong3,*, LIN Jinke4,*
Received:
2018-06-07
Revised:
2018-08-09
Online:
2018-12-15
Published:
2019-12-15
CLC Number:
ZHENG Shizhong, JIANG Shengtao, LIU Wei, CHEN Meixia, LIN Yuling, LAI Zhongxiong, LIN Jinke. Cloning and Functional Analysis of the CsMYB Promoter In Tea Plant (Camellia sinensis L.)[J]. Journal of Tea Science, 2018, 38(6): 580-588.
[1] | 涂良剑, 林用松, 黄学敏, 等. 高EGCG茶树品系杂交技术研究[J]. 茶叶科学, 2012, 32(5): 426-431. |
[2] | Park S Y, Lee Y K, Kim Y M, et al.Control of AMP-activated protein kinase, akt, and mtor in EGCG-treated ht-29 colon cancer cells[J]. Food Science & Biotechnology, 2013, 22(1): 147-151. |
[3] | 柳敏,饶国武,华允芬. EGCG衍生物合成及药理活性研究进展[J]. 茶叶科学, 2016, 36(2): 119-130. |
[4] | Ortsäter H, Grankvist H, Wolfram S, et al.Diet supplementation with green tea extract epigallocatechin gallate prevents progression to glucose intolerance indb/db mice[J]. Nutrition & Metabolism, 2012, 9(1): 11-11 |
[5] | Luo X B, Rongfa Guan, Chen X Q, et al.Optimization on condition of epigallocatechin- 3-gallate (EGCG) nanoliposomes by response surface methodology and cellular uptake studiesin Caco-2 cells[J]. Nanoscale Research Letters, 2014, 9(1): 1-9. |
[6] | Punyasiri P A, Abeysinghe I S,Kumar V, et al.Flavonoid biosynthesis in the tea plant properties of enzymes of the prominent epicatechin and catechin pathways[J]. Arch Biochem Biophys, 2004, 431(1): 22-30. |
[7] | Wei K, Wang L, Zhou J, et al.Catechin contents in tea(Camellia sinensis) as affected by cultivar and environmentand their relation to chlorophyll contents[J]. Food Chemistry, 2011, 125(1): 44-48. |
[8] | Dubos C, Stracke R, Grotewold E, et al.MYB transcription factors in Arabidopsis[J]. Trends in Plant Science, 2010, 15(10): 573-581. |
[9] | Riechmann J L, Heard J, Martin G, et al.Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499): 2105-2110. |
[10] | 李宗艳, 李名扬. 调控植物类黄酮生物合成的转录因子研究进展[J]. 南京林业大学学报, 2011, 35(5): 129-133. |
[11] | Li C, Ng K Y, Fan L M.MYB transcription factors, active players in abiotic stress signaling[J]. Environmental and Experimental Botany, 2015, 114(6): 80-91. |
[12] | Ranjan R, Gupta D.Introduction to Plant Promoter[J]. Saarbrücken: Lambert Academic Publication; 2016: 149. |
[13] | Chow C N, Zheng H Q, Wu N Y, et al.PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants[J]. Nucleic Acids Research, 2016, 44(D1): D1154-D1160. |
[14] | 雒雅婧, 李杰, 张爽, 等. 植物启动子研究进展[J]. 北方园艺,2015, 39(22): 186-189. |
[15] | Smale S T, Kadonaga J T.The rna polymerase II core promoter[J]. Annual Review of Biochemistry, 2003, 72(1): 449-479. |
[16] | Lin J, Wilson I W, Ge G, et al.Whole transcriptome analysis of three leaf stages in two cultivars and one of their F1, hybrid of Camellia sinensis L. with differing EGCG content[J]. Tree Genetics & Genomes, 2017, 13(1): 13-27. |
[17] | Zheng S, Lin Y, Lai Z, et al.Isolation and characterisation of a MYB transcription factor associated with epigallocatechin-3-gallate biosynthesis in Camellia sinensis L[J]. The Journal of Horticultural Science and Biotechnolo- gy, https://doi.org/10.1080/14620316.2018.1454863. |
[18] | 丁晓东, 吕柳新. 从顽拗植物荔枝中提取基因组DNA技术的研究[J]. 应用与环境生物学报, 2000, 6(2): 142-145. |
[19] | Zhang M, Wang S, Yin J, et al.Molecular cloning and promoter analysis of squalene synthase and squalene epoxidase genes from Betula platyphylla[J].Protoplasma, 2016, 253(5): 1-17. |
[20] | Wang X Q, Shen X, Yun-Mian H E, et al. An optimized freeze-thaw method for transfo- rmation of Agrobacterium Tumefaciens EHA105 and LBA4404[J]. Pharmaceutical Biotechnology, 2011, 18(5): 382-386. |
[21] | Li Y and Zhang Y S. Study on agrobacterium tumefaciens-mediated transient transformation of tobacco by infiltration[J]. Experimental Technology & Management, 2010, 27(11): 50-52. |
[22] | Jefferson R A, Kavanagh T A, Bevan M W.GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants[J]. Embo Journal, 1987, 6(6): 3901-3907. |
[23] | Bo H.GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformattics, 2015, 31(8): 1296-1297. |
[24] | Benjamin L. Genes Ⅶ [M], Oxford University, 2000 chapter 22 (in English). |
[25] | .李田, 孙景宽, 刘京涛. 植物启动子研究进展[J]. 生物技术通报,2015, 31(2): 18-25. |
[26] | 胡廷章, 罗凯, 甘丽萍, 等. 植物基因启动子的类型及其应用[J]. 湖北农业科学, 2007, 46(1): 149-151. |
[27] | Santner A, Calderonvillalobos L I, Estelle M.Plant hormones are versatile chemical regulators of plant growth[J]. Nature Chemical Biology, 2009, 5(5): 301-307. |
[28] | Shigenaga A M, Argueso C T.No hormone to rule them all: interactions of plant hormones during the responses of plants to pathogens[J]. Seminars in Cell & Developmental Biology, 2016, 56: 174-189. |
[29] | 杨亚军, 郑雷英, 王新超. 冷驯化和ABA对茶树抗寒力及其体内脯氨酸含量的影响[J]. 茶叶科学, 2004, 24(3): 177-182. |
[30] | Mundy J, Yamaguchi-Shinozaki K, Chua N H.Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(4): 1406-1410. |
[31] | Shaddad M A K, Abd E S H M, Mostafa D. Role of gibberellic acid (GA3) in improving salt stress tolerance of two wheat cultivars[J]. International Journal of Plant Physiology & Biochemistry, 2013, 5(4): 50-57. |
[32] | Manan A, Ayyub C M, Pervez M A, et al.Methyl jasmonate brings about resistance against salinity stressed tomato plants by altering biochemical and physiological processes[J]. Pakistan Journal of Agricultural Sciences, 2016, 53(1): 35-41. |
[33] | Nambara E, Kuchitsu K.Opening a new era of ABA research[J]. Journal of Plant Research, 2011, 124(4): 431-435. |
[34] | Fahad S, Hussain S, Matloob A, et al.Phytohormones and plant responses to salinity stress:a review[J]. Plant Growth Regulation, 2015, 75(2): 391-404. |
[35] | 陈娜, 迟晓元, 潘丽娟, 等. MYB转录因子在植物盐胁迫调控中的研究进展[J]. 植物生理学报, 2015, 51(9): 1395-1399. |
[36] | Casaretto J A, El-Kereamy A, Zeng B, et al.Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance[J]. BMC Genomics, 2016, 17(1): 312-326. |
[37] | Liao Y, Zou H F, Wang H W,et al.Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants[J]. Cell Research, 2008, 18(10): 1047-1060. |
[38] | Yamaguchi-Shinozaki K, Shinozaki K.A novel cis-acting element in an arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress[J]. Plant Cell, 1994, 6(2): 251-264. |
[39] | Abe H, Urao T, Ito T, et al.Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. Plant Cell, 2003, 15(1): 63-78. |
[1] | WANG Liubin, HUANG Liyun, TENG Cuiqin, WU Liyun, CHENG Hao, YU Cuiping, WANG Liyuan. Genetic and Phylogenetic Analysis for Germplasm Resources of Camellia sinensis from Wuzhou City [J]. Journal of Tea Science, 2022, 42(5): 601-609. |
[2] | ZHOU Hanchen, YANG Jihong, XU Yujie, WU Qiong, LEI Pandeng. Phylogenetic Analysis of NUDX1 Gene Involved in Geraniol Biosynthesis [J]. Journal of Tea Science, 2022, 42(5): 638-648. |
[3] | XING Anqi, WU Zichen, XU Xiaohan, SUN Yi, WANG Genmei, WANG Yuhua. Research Advances of Fluoride Accumulation Mechanisms in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 301-315. |
[4] | WANG Tao, WANG Yiqing, QI Siyu, ZHOU Zhe, CHEN Zhidan, SUN Weijiang. Identification and Transcriptional Regulation of CLH Gene Family and Expression Analysis in Albino Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 331-346. |
[5] | LIU Fuhao, FAN Yangen, WANG Yu, MENG Fanyue, ZHANG Lixia. Screening and Identification of Chaperone CsHIPP26.1 Chelating Ions in Tea Cultivar ‘Huangjinya’ [J]. Journal of Tea Science, 2022, 42(2): 179-186. |
[6] | WANG Pengjie, YANG Jiangfan, ZHANG Xingtan, YE Naixing. Research Advance of Tea Plant Genome and Sequencing Technologies [J]. Journal of Tea Science, 2021, 41(6): 743-752. |
[7] | ZHOU Hanchen, LEI Pandeng. The Functional Identification of Two Alternative Splicing Transcripts of CsNES [J]. Journal of Tea Science, 2021, 41(6): 753-760. |
[8] | YAN Minghui, LIU Ke, WANG Man, LYU Ying, ZHANG Qian. Complete Chloroplast Genome of Camellia sinensis cv. Xinyang 10 and Its Phylogenetic Evolution [J]. Journal of Tea Science, 2021, 41(6): 777-788. |
[9] | LIN Xinying, WANG Pengjie, CHEN Xuejin, GUO Yongchun, GU Mengya, ZHENG Yucheng, YE Naixing. Identification of LOX Gene Family in Camellia sinensis and Expression Analysis in the Process of White Tea Withering [J]. Journal of Tea Science, 2021, 41(4): 482-496. |
[10] | WANG Yanding, WANG Huan, LI Nana, WANG Lu, HAO Xinyuan, WANG Yuchun, DING Changqing, YANG Yajun, WANG Xinchao, QIAN Wenjun. Identification and Expression Analysis of Glucose-6-hosphate Dehydrogenase Gene (CsG6PDHs) in Camellia sinensis [J]. Journal of Tea Science, 2021, 41(4): 497-510. |
[11] | CHEN Siwen, KANG Rui, GUO Zhiyuan, ZHOU Qiongqiong, FENG Jiancan. Cloning and Expression Analysis of CsCML16 in Tea Plants (Camellia sinensis) under Low Temperature Stress [J]. Journal of Tea Science, 2021, 41(3): 315-326. |
[12] | ZHAO Yiqing, LIU Zhengjun, ZHANG Tianxin, ZHAO Yanting, XIAO Bin, GAO Yuefang. Cloning of CsCHLI Gene and Its Expression Analysis in Different Albino Tea Cultivars (Camellia sinensis) [J]. Journal of Tea Science, 2021, 41(3): 327-336. |
[13] | GUO Lingling, ZHANG Fen, CHENG Hao, WEI Kang, RUAN Li, WU Liyun, WANG Liyuan. Molecular Cloning and Expression Analysis of CsAAPs Gene Subfamily in Camellia Sinensis [J]. Journal of Tea Science, 2020, 40(4): 454-464. |
[14] | WANG Minghan, DING Ding, ZHANG Chenyu, GAO Xizhi, CHEN Jianjiao, TANG Han, SHEN Chengwen. Effects of Drought Stress on Growth and Chlorophyll Fluorescence Characteristics of Tea Seedlings [J]. Journal of Tea Science, 2020, 40(4): 478-491. |
[15] | GUO Yongchun, CHEN Jinfa, ZHAO Feng, WANG Shuyan, WANG Pengjie, ZHOU Peng, OUYANG Liqun, JIN Shan, YE Naixing. Study on the Distribution of Glyphosate and Its Metabolite Aminomethylphosphonic Acid in Camellia Sinensis [J]. Journal of Tea Science, 2020, 40(4): 510-518. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|