Journal of Tea Science ›› 2018, Vol. 38 ›› Issue (2): 133-139.doi: 10.13305/j.cnki.jts.2018.02.003
Previous Articles Next Articles
RAN Wei1,2, ZHANG Jin1,2, ZHANG Xin1,2, LIN Songbo1,2, SUN Xiaoling1,2,*
Received:
2017-12-18
Revised:
2018-01-16
Online:
2018-04-15
Published:
2019-08-28
CLC Number:
RAN Wei, ZHANG Jin, ZHANG Xin, LIN Songbo, SUN Xiaoling. Infestation of Ectropis obliqua Affects the Catechin Metabolism in Tea Plants[J]. Journal of Tea Science, 2018, 38(2): 133-139.
[1] | 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003. |
[2] | Jiang X, Feng K, Yang X.In vitro antifungal activity and mechanism of action of tea polyphenols and tea saponin against Rhizopus stolonifera[J]. J Mol Microbiol Biotechnol, 2015, 35(7): 269-276. |
[3] | Mikulic-Petkovsek M, Schmitzer V, Jakopic J, et al.Phenolic compounds as defence response of pepper fruits to Colletotrichum coccodes [J]. Physiol Mol Plant Pathol, 2013, 84(1): 138-145. |
[4] | Yi S M, Zhu J L, Fu L L, et al.Tea polyphenols inhibit Pseudomonas aeruginosa through damage to the cell membrane[J]. Int J Food Microbiol, 2010, 144(1): 111-117. |
[5] | Aditi S, Kanwar S S, Sud R G, et al.Influence of phenolic compounds of Kangra tea [Camellia sinensis(L) O Kuntze] on bacterial pathogens and indigenous bacterial probiotics of Western Himalayas[J]. Braz J Microbiol. 2013, 44(3): 709-715. |
[6] | Wang Y C, Qian W J, Li N N, et al.Metabolic changes of caffeine in tea pant (Camellia sinensis (L.) O. Kuntze) as defense response to colletotrichum fructicola[J]. Journal of Agricultural & Food Chemistry, 2016, 64(35): 6685-6693. |
[7] | Siranidou E, Kang Z, Buchenauer H.Studies on symptom development, phenolic compounds and morphological defense responses in wheat cultivars differing in resistance to fusarium, head bight[J]. Journal of Phytopathology, 2002, 150(5): 200-208. |
[8] | Czerniewicz P, Sytykiewicz H, Durak R, et al.Role of phenolic compounds during antioxidative responses of winter triticale to aphid and beetle attack[J]. Plant Physiology & Biochemistry Ppb, 2017(118): 529-540. |
[9] | 郑高云. 不同茶树品种对茶尺蠖抗性机制的研究[D]. 合肥: 安徽农业大学, 2008. |
[10] | 金珊. 不同茶树品种抗假眼小绿叶蝉机理研究[D]. 杨凌: 西北农林科技大学, 2012. |
[11] | 高香凤, 李慧玲, 王庆森. 茶树叶片组织结构及次生物质与抗虫性关系研究进展[J]. 茶叶科学技术, 2011(2): 7-11. |
[12] | Mohanpuria P, Kumar V, Yadav S K.Tea caffeine: Metabolism, functions, and reduction strategies[J]. Food Science & Biotechnology, 2010, 19(2): 275-287. |
[13] | Xin Z, Zhang Z, Chen Z, et al.Salicylhydroxamic acid (SHAM) negatively mediates tea herbivore-induced direct and indrect defense against the tea geometrid Ectropis obliqua[J]. J Plant Res, 2014, 127(4): 565-572. |
[14] | Fragoso V, Rothe E, Baldwin I T, et al.Root jasmonic acid synthesis and perception regulate folivore-induced shoot metabolites and increase Nicotiana attenuata resistance[J]. New Phytologist, 2014, 202(4): 1335-1345. |
[15] | Sun X L, Wang G C, Gao Y, et al.Volatiles emitted from tea plants infested by Ectropis obliqua larvae are attractive to conspecifc moths[J]. Journal of Chemical Ecology, 2014, 40(10): 1080-1089. |
[16] | 孙晓玲, 高宇, 陈宗懋. 虫害诱导植物挥发物(HIPVs)对植食性昆虫的行为调控[J]. 应用昆虫学报, 2012, 49(6): 1413-1422. |
[17] | 雷舒, 李喜旺, 孙晓玲, 等. 茶尺蠖为害提高临近茶苗对茶尺蠖幼虫的防御能力[J]. 茶叶科学, 2016, 36(6): 587-593. |
[18] | 张琪, 徐维玲, 李翠芹. HPLC法同时测定茶叶中儿茶素类和咖啡因的含量[J]. 食品工业科技, 2015, 36(4): 53-56. |
[19] | Kessler A, Baldwin IT.Plant responses to insect herbivory: the emerging molecular hypothesis[J]. Annu Rev Plant Biol, 2002, 53(1): 299-328. DOI: 10.1146/annurev.arplant. 53.100301.135207. |
[20] | War AR, Paulraj MG, Hussain B, et al.Effect of plant secondary metabolites on legume pod borer, helicoverpa armigera[J]. Journal of Pest Science, 2013, 86(3): 399-408. |
[21] | Scogings P F, Hjältén J, Skarpe C, et al.Nutrient and secondary metabolite concentrations in a savanna are independently affected by large herbivores and shoot growth rate[J]. Plant Ecology, 2014, 215(1): 73-82. |
[22] | Lattanzio V, Lattanzio V M T, Cardinali A. Role of polyphenols in the resistance mechanisms of plants against fungal pathogens and insects[M]. Imperato, F. Phytochemistry: Advances in research, Research Signpost. Trivandrum, Kerala, India, 2006: 23-67. |
[23] | Wójcicka A.Cereal phenolic compounds as biopesticides of cereal aphids[J]. Polish Journal of Environmental Studies, 2010, 19(6): 1337-1343. |
[24] | 刘泽辉, 赵国虎, 陆敬善, 等. 棉花棉酚含量与抗虫特性的研究[J]. 新疆农业科学, 2008, 45(3): 409-413. |
[25] | Punyasiri P A, Abeysinghe I S, Kumar V, et al.Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways[J]. Archives of Biochemistry & Biophysics, 2004, 431(1): 22-30. |
[26] | Felton G, Donato K, Broadway R, et al.Impact of oxidized plant phenolics on the nutritional quality of dietar protein to a noctuid herbivore, Spodoptera exigua[J]. Journal of Insect Physiology, 1992, 38(4): 277-285 |
[27] | Wang J, Constabel C P.Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria)[J]. Planta, 2004, 220(1): 87-96. |
[28] | Bhonwong A, Stout MJ, Attajarusit J, et al.Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua)[J]. Journal of Chemical Ecology, 2009, 35(1): 28-38. |
[29] | Vanitha S C, Umesha S.Role of phenylalanine ammonia lyase and polyphenol oxidase in host resistance to bacterial wilt of tomato[J]. Journal of Phytopathology, 2010, 157(9): 552-557. |
[30] | Bosch M, Berger S, Schaller A, et al.Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense against Spodoptera exigua but not against Manduca sexta[J]. Bmc Plant Biology, 2014, 14(1): 257-272. |
[31] | 朱香镇, 麻巧迎, 张帅, 等. 棉花多酚氧化酶基因GhPPO1的克隆及在棉铃虫取食诱导反应中的作用[J]. 中国农业科学, 2014, 47(16): 3174-3183. |
[32] | Mishra BB, Gautam S.Polyphenol oxidases: biochemical and molecular characterization, distribution, role and its control[J]. Enz Eng, 2016, 5: 141. Doi:10.4172/2329-6674.1000141. |
[33] | Liang X, Chen Q, Lu H, et al.Increased activities of peroxidase and polyphenol oxidase enhance cassava resistance to Tetranychus urticae[J]. Experimental and Applied Acarology, 2017, 71(3), 195-209. |
[34] | Yang ZW, DUAN XN, Jin S, et al.Regurgitant derived from the tea geometrid ectropis obliqua suppresses, wound-induced polyphenol oxidases activity in tea plants[J]. Journal of Chemical Ecology, 2013, 39(6): 744-751. |
[1] | WANG Liubin, HUANG Liyun, TENG Cuiqin, WU Liyun, CHENG Hao, YU Cuiping, WANG Liyuan. Genetic and Phylogenetic Analysis for Germplasm Resources of Camellia sinensis from Wuzhou City [J]. Journal of Tea Science, 2022, 42(5): 601-609. |
[2] | ZHOU Hanchen, YANG Jihong, XU Yujie, WU Qiong, LEI Pandeng. Phylogenetic Analysis of NUDX1 Gene Involved in Geraniol Biosynthesis [J]. Journal of Tea Science, 2022, 42(5): 638-648. |
[3] | XING Anqi, WU Zichen, XU Xiaohan, SUN Yi, WANG Genmei, WANG Yuhua. Research Advances of Fluoride Accumulation Mechanisms in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 301-315. |
[4] | WANG Tao, WANG Yiqing, QI Siyu, ZHOU Zhe, CHEN Zhidan, SUN Weijiang. Identification and Transcriptional Regulation of CLH Gene Family and Expression Analysis in Albino Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 331-346. |
[5] | LIU Fuhao, FAN Yangen, WANG Yu, MENG Fanyue, ZHANG Lixia. Screening and Identification of Chaperone CsHIPP26.1 Chelating Ions in Tea Cultivar ‘Huangjinya’ [J]. Journal of Tea Science, 2022, 42(2): 179-186. |
[6] | YAN Yuting, LI Yujie, WANG Qian, TANG Meijun, GUO Huawei, LI Hongliang, SUN Liang. The Expression Profiles of Chemosensory Protein 8 Orthologs in Two Closely Related Tea Geometrid Species, Ectropis obliqua Prout and Ectropis grisescens Warren [J]. Journal of Tea Science, 2022, 42(2): 200-210. |
[7] | LIU Yajun, WANG Peiqiang, JIANG Xiaolan, ZHUANG Juhua, GAO Liping, XIA Tao. Research Progress on the Biosynthesis of Monomeric and Polymeric Catechins in Camellia sinensis [J]. Journal of Tea Science, 2022, 42(1): 1-17. |
[8] | MA Bingsong, WANG Jiacai, XU Chengcheng, REN Xiaoying, MA Cunqiang, ZHOU Binxing. Differences of Phenolic Components in Puer Raw Tea with Various Storage Periods and Their Effects on the in vitro Antioxidant Capacities [J]. Journal of Tea Science, 2022, 42(1): 51-62. |
[9] | WANG Pengjie, YANG Jiangfan, ZHANG Xingtan, YE Naixing. Research Advance of Tea Plant Genome and Sequencing Technologies [J]. Journal of Tea Science, 2021, 41(6): 743-752. |
[10] | ZHOU Hanchen, LEI Pandeng. The Functional Identification of Two Alternative Splicing Transcripts of CsNES [J]. Journal of Tea Science, 2021, 41(6): 753-760. |
[11] | YAN Minghui, LIU Ke, WANG Man, LYU Ying, ZHANG Qian. Complete Chloroplast Genome of Camellia sinensis cv. Xinyang 10 and Its Phylogenetic Evolution [J]. Journal of Tea Science, 2021, 41(6): 777-788. |
[12] | YAN Yuting, WU Fan, ZHANG Yali, FU Xiaobin, CUI Hongchun, HAN Baoyu, LI Hongliang. Study on the Differences in Ligand-binding Function and Mode of the Antennal High-abundance Odorant-binding Proteins EoblOBP9 and EoblOBP11 of the Tea Geometrid, Ectropis obliqua Prout [J]. Journal of Tea Science, 2021, 41(5): 643-653. |
[13] | LIN Xinying, WANG Pengjie, CHEN Xuejin, GUO Yongchun, GU Mengya, ZHENG Yucheng, YE Naixing. Identification of LOX Gene Family in Camellia sinensis and Expression Analysis in the Process of White Tea Withering [J]. Journal of Tea Science, 2021, 41(4): 482-496. |
[14] | WANG Yanding, WANG Huan, LI Nana, WANG Lu, HAO Xinyuan, WANG Yuchun, DING Changqing, YANG Yajun, WANG Xinchao, QIAN Wenjun. Identification and Expression Analysis of Glucose-6-hosphate Dehydrogenase Gene (CsG6PDHs) in Camellia sinensis [J]. Journal of Tea Science, 2021, 41(4): 497-510. |
[15] | XU Bin, HAN Guangjie, QI Jianhang, LI Chuanming, XU Jian, LU Yurong, LIU Qin. Virulence Difference of Two Strains of EoNPV Isolates to Ectropis obliqua and Ectropis grisescens [J]. Journal of Tea Science, 2021, 41(4): 545-552. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|