[1] |
Hrabak E M, Chan C W, Gribskov M, et al.The Arabidopsis CDPK-SnRK superfamily of protein kinases[J]. Plant Physiology, 2003, 132(2): 666-680.
|
[2] |
Harmon A C.Calcium-regulated protein kinases of plant[J]. Gravitational & Space Biology Bulletin Publication of the American Society for Gravitational & Space Biology, 2003, 16(2): 83-90.
|
[3] |
Ying S, Zhang D F, Li H Y, et al.Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis[J]. Plant Cell Reports, 2011, 30(9): 1683-1699.
|
[4] |
Zhang H, Jia H, Liu G, et al.Cloning and characterization of NtSnRK2.7 and NtSnRK2.8 genes involved in abiotic stress responses from Nicotiana tabacum[J]. Acta Physiologiae Plantarum, 2014, 36(7): 1673-1682.
|
[5] |
Du X, Zhao X, Li X, et al.Overexpression of TaSRK2C1, a wheat SNF1-related protein kinase 2 gene, increases tolerance to dehydration, salt, and low temperature in transgenic tobacco[J]. Plant Molecular Biology Reporter, 2013, 31(4): 810-821.
|
[6] |
Liu J Y, Chen N N, Cheng Z M, et al.Genome-wide identification, annotation and expression profile analysis of SnRK2 gene family in grapevine[J]. Australian Journal of Grape and Wine Research, 2016, 22(3): 478-488.
|
[7] |
Yu X, Takebayashi A, Demura T, et al.Differential expression of poplar sucrose nonfermenting1-related protein kinase 2 genes in response to abiotic stress and abscisic acid[J]. Journal of Plant Research, 2017, 130(5): 920-940.
|
[8] |
Kulik A, Wawer I, Krzywinska E, et al.SnRK2 protein kinases—key regulators of plant response to abiotic stresses[J]. Omics A Journal of Integrative Biology, 2011, 15(12): 859-872.
|
[9] |
Phan T T, Sun B, Niu J Q, et al.Overexpression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco[J]. Plant Cell Reports, 2016, 35(9): 1891-1905.
|
[10] |
Song X, Yu X, Hori C, et al.Heterologous overexpression of poplar SnRK2 genes enhanced salt stress tolerance in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2016, 7. doi:10.3389/fpls.2016.00612.
|
[11] |
Tian S, Mao X, Zhang H, et al.Cloning and characterization of TaSnRK2.3, a novel SnRK2 gene in common wheat[J]. Journal of Biological Chemistry, 2013, 64(7): 2063-2080.
|
[12] |
Yoshida T, Mogami J, Yamaguchi-Shinozaki K.ABA-dependent and ABA-independent signaling in response to osmotic stress in plants[J]. Current Opinion in Plant Biology, 2014, 21(21C): 133-139.
|
[13] |
Zhang H, Mao X, Jing R, et al.Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses[J]. Journal of Experimental Botany, 2011, 62(3): 975-988.
|
[14] |
Yoshida R, Umezawa T, Mizoguchi T, et al.The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis[J]. Journal of Biological Chemistry, 2006, 281(8): 5310-5318.
|
[15] |
Kobayashi Y, Yamamoto S, et al.Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid[J]. Plant Cell, 2004, 16(5): 1163-1177.
|
[16] |
Park S Y, Fung P, Nishimura N, et al.Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science, 2009, 324(5930): 1068-1071.
|
[17] |
Santiago J, Dupeux F, Betz K, et al.Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs[J]. Plant Science, 2012, 182(1): 3-11.
|
[18] |
罗列万. 2013年浙江省夏季茶园高温干旱受灾情况调查评估[J]. 中国茶叶, 2013, 35(9): 17-17.
|
[19] |
郭俊红, 王伟东, 谷星, 等. 茶树WRKY转录因子基因CsWRKY57的克隆及表达分析[J]. 茶叶科学, 2017, 37(4): 411-419.
|
[20] |
Hao X, Horvath D P, Chao W S, et al.Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)[J]. International Journal of Molecular Sciences, 2014, 15(12): 22155-22172.
|
[21] |
Lou D, Wang H, Liang G, et al.OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice[J]. Frontiers in Plant Science, 2017. https://doi.org/10.3389/ fpls.2017.00993.
|
[22] |
Ng L M, Soon F F, Zhou X E, et al.Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(52): 21259-21264.
|
[23] |
Vlad F, Droillard M J, Valot B, et al.Phospho-site mapping, genetic and in planta activation studies reveal key aspects of the different phosphorylation mechanisms involved in activation of SnRK2s[J]. Plant J, 2010, 63(5): 778-790.
|
[24] |
Zhang H, Jia H, Liu G, et al.Cloning and characterization of SnRK2 subfamily II genes from Nicotiana tabacum[J]. Mol Biol Rep, 2014, 41(9): 5701-5709.
|
[25] |
Bai J, Mao J, Yang H, et al.Sucrose non-ferment 1 related protein kinase 2 (SnRK2) genes could mediate the stress responses in potato (Solanum tuberosum L.)[J]. BMC Genet, 2017, 18(1): 41. DOI: https://doi.org/10.1186/s12863-017-0506-6.
|
[26] |
Liu Z, Ge X, Yang Z, et al. Genome-wide identification and characterization of SnRK2 gene family in cotton (Gossypium hirsutum L.) [J]. BMC Genet, 2017, 18(1): 54. https://doi.org/10.1186/s12863-017-0517-3.
|
[27] |
McLoughlin F, Galvan-Ampudia C S, Julkowska M M, et al. The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress[J]. The Plant Journal, 2012, 72(3): 436-449.
|
[28] |
Zhang H, Li W, Mao X, et al.Differential activation of the wheat SnRK2 family by abiotic stresses[J]. Frontiers in Plant Science, 2016, 7(106): 420. doi: 10.3389/fpls.2016.00420.
|
[29] |
Wang L, Hu W, Sun J, et al.Genome-wide analysis of SnRK gene family in Brachypodium distachyon and functional characterization of BdSnRK2.9[J]. Plant Science, 2015, 237: 33-45.
|
[30] |
Mao X, Zhang H, Tian S, et al.TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis[J]. Journal of Experimental Botany, 2010, 61(3): 683-696.
|
[31] |
Huai J, Wang M, He J, et al.Cloning and characterization of the SnRK2 gene family from Zea mays[J]. Plant Cell Rep, 2008, 27(12): 1861-1868.
|
[32] |
Boudsocq M, Barbier-Brygoo H, Lauriere C.Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2004, 279(40): 41758-41766.
|