Journal of Tea Science ›› 2014, Vol. 34 ›› Issue (2): 111-121.doi: 10.13305/j.cnki.jts.2014.02.001
LIU Shengchuan1,2, CHEN Liang1,*
Received:
2013-07-11
Revised:
2013-09-12
Online:
2014-04-15
Published:
2019-09-03
CLC Number:
LIU Shengchuan, CHEN Liang. Research Advances on the Drought-Resistance Mechanism and Strategy of Tea Plant[J]. Journal of Tea Science, 2014, 34(2): 111-121.
[1] | Gupta S, Bharalee R, Bhorali P, et al. Identification of drought tolerant progenies in tea by gene expression analysis[J]. Functional & Integrative Genomics, 2012, 12(3): 543-563. |
[2] | Sharma P, Kumar S.Differential display-mediated identification of three drought-responsive expressed sequence tags in tea [Camellia sinensis (L.) O. Kuntze][J]. Journal of Biosciences, 2005, 30(2): 231-235. |
[3] | Farooq M, Hussain M, Wahid A, et al. Drought Stress in Plants: An Overview[M]//Plant Responses to Drought Stress. Springer Berlin Heidelberg, 2012: 1-33. |
[4] | 马蕊. 云南普洱茶大幅减产干旱导致云南茶价上涨[J]. 中国茶叶, 2010, 32(4): 20. |
[5] | 伍崇岳. 干旱致湖南夏茶减产三成[J]. 茶博览, 2011(6): 29. |
[6] | Cheruiyot E K, Mumera L M, Ngetich W K, et al. High fertilizer rates increase susceptibility of tea to water stress[J]. Journal of Plant Nutrition, 2009, 33(1): 115-129. |
[7] | Upadhyaya H, Dutta B K, Sahoo L, et al. Comparative effect of Ca, K, Mn and B on post-drought stress recovery in tea [Camellia sinensis (L.) O Kuntze][J]. American Journal of Plant Sciences, 2012, 3(4): 443-460. |
[8] | 魏鹏. 茶树抗旱性部分生理生化指标的研究[D]. 重庆: 西南农业大学, 2003. |
[9] | 刘玉英, 徐泽, 罗云米. 干旱胁迫对不同茶树品种生理特性的影响[J]. 西南农业学报, 2010, 23(2): 387-389. |
[10] | 杨华, 唐茜, 黄毅, 等. 名山白毫对干旱胁迫的生理生态响应[J]. 西南农业学报, 2010, 23(5): 1497-1503. |
[11] | Cheruiyot E K, Mumera L M, Ngetich W K, et al. Polyphenols as potential indicators for drought tolerance in tea (Camellia sinensis L.)[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(9): 2190-2197. |
[12] | Kato M, Kitao N, Ishida M, et al. Expression for caffeine biosynthesis and related enzymes in Camellia sinensis[J]. Zeitschrift Fur Naturforschung C, 2010, 65(3): 245-256. |
[13] | 柯玉琴, 庄重光, 何华勤, 等. 不同灌溉处理对铁观音茶树光合作用的影响[J]. 应用生态学报, 2008, 19(10): 2132-2136. |
[14] | 曹潘荣, 刘春燕, 刘克斌, 等. 水分胁迫诱导岭头单枞茶香气的形成研究[J]. 华南农业大学学报, 2006, 27(1): 17-20. |
[15] | Chen X H, Zhuang C G, He Y F, et al. Photosynthesis, yield, and chemical composition of Tieguanyin tea plants [Camellia sinensis (L.) O. Kuntze] in response to irrigation treatments[J]. Agricultural Water Management, 2010, 97(3): 419-425. |
[16] | Chaves M M, Maroco J P, Pereira J S.Understanding plant responses to drought—from genes to the whole plant[J]. Functional Plant Biology, 2003, 30(3): 239-264. |
[17] | Xu ZZ, Zhou GS, Shimizu H.Plant responses to drought and rewatering[J]. Plant Signaling & Behavior, 2010, 5(6): 649-654. |
[18] | Kantar M, Lucas S J, Budak H.Drought stress: molecular genetics and genomics approaches[J]. Advances in Botanical Research, 2011(57): 445-493. |
[19] | Upadhyaya H, Panda S K.Responses of Camellia sinensis to drought and rehydration[J]. Biologia Plantarum, 2004, 48(4): 597-600. |
[20] | Upadhyaya H, Panda S K, Dutta B K.Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery[J]. Acta Physiologiae Plantarum, 2008, 30(4): 457-468. |
[21] | 覃秀菊, 李凤英, 何建栋, 等. 广西茶树新品种品系叶片解剖结构特征与特性关系的研究[J]. 中国农学通报, 2009, 25(10): 36-39. |
[22] | Netto L A, Jayaram K M, Puthur J T.Clonal variation of tea [Camellia sinensis (L.) O. Kuntze] in countering water deficiency[J]. Physiology and Molecular Biology of Plants, 2010, 16(4): 359-367. |
[23] | 王家顺, 李志友. 干旱胁迫对茶树根系形态特征的影响[J]. 河南农业科学, 2011, 40(9): 55-57. |
[24] | 杨华. 名山白毫茶树品种对干旱胁迫的生理生态响应[D]. 雅安: 四川农业大学, 2007. |
[25] | 郝树荣, 郭相平, 王为木, 等. 水稻分蘖期水分胁迫及复水对根系生长的影响[J]. 干旱地区农业研究, 2007, 25(1): 149-152. |
[26] | 刘锦春, 钟章成. 水分胁迫和复水对石灰岩地区柏木幼苗根系生长的影响[J]. 生态学报, 2009, 29(12): 6439-6445. |
[27] | Sanders G J, Arndt S K.Osmotic Adjustment Under Drought Conditions[M]//Plant Responses to Drought Stress. Springer Berlin Heidelberg, 2012: 199-229. |
[28] | 张木清, 陈如凯. 作物抗旱分子生理与遗传改良[M]. 北京: 科学出版社, 2005: 369. |
[29] | 潘瑞炽. 植物生理学[M]. 北京: 高等教育出版社, 2004: 297. |
[30] | 刘玉英. 茶树抗旱生理生化机制的研究[D]. 重庆: 西南大学, 2006. |
[31] | Impa S M, Nadaradjan S, Jagadish S V K. Abiotic Stress Responses in Plants[M]//Drought stress induced reactive oxygen species and anti-oxidants in plants, 2012: 131-147. |
[32] | Peleg Z, Blumwald E.Hormone balance and abiotic stress tolerance in crop plants[J]. Current Opinion in Plant Biology, 2011, 14(3): 290-295. |
[33] | 潘根生, 吴伯千, 沈生荣, 等. 水分胁迫过程中茶树新梢内源激素水平的消长及其与耐旱性的关系[J]. 中国农业科学, 1996, 29(5): 9-15. |
[34] | 刘长海, 周莎莎, 邹养军, 等. 干旱胁迫条件下不同抗旱性苹果砧木内源激素含量的变化[J]. 干旱地区农业研究, 2012, 30(5): 94-98. |
[35] | Dobra J, Motyka V, Dobrev P, et al. Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content[J]. Journal of Plant Physiology, 2010, 167(16): 1360-1370. |
[36] | 闫映宇, 赵成义, 盛钰, 等. 膜下滴灌对棉花根系、地上部分生物量及产量的影响[J]. 应用生态学报, 2009, 20(4): 970-976. |
[37] | Reddy A R, Chaitanya K V, Vivekanandan M.Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. Journal of Plant Physiology, 2004, 161(11): 1189-1202. |
[38] | 郭春芳, 孙云, 张木清. 不同土壤水分对茶树光合作用与水分利用效率的影响[J]. 福建林学院学报, 2008, 28(4): 333-337. |
[39] | 郭春芳, 孙云, 唐玉海, 等. 水分胁迫对茶树叶片叶绿素荧光特性的影响[J]. 中国生态农业学报, 2009, 17(3): 560-564. |
[40] | 郭春芳, 孙云, 张木清. 土壤水分胁迫对茶树光合作用——光响应特性的影响[J]. 中国生态农业学报, 2008, 16(6): 1413-1418. |
[41] | 刘玉英, 易红华, 徐泽. 干旱胁迫对不同茶树品种叶绿素含量的影响[J]. 南方农业, 2007, 1(1): 68-70. |
[42] | Huang G T, Ma S L, Bai L P, et al. Signal transduction during cold, salt, and drought stresses in plants[J]. Molecular Biology Reports, 2012, 39(2): 969-987. |
[43] | Chaves M M, Flexas J, Pinheiro C.Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell[J]. Annals of Botany, 2009, 103(4): 446-473. |
[44] | Grigorova B, Vaseva I, Demirevska K, et al. Combined drought and heat stress in wheat: changes in some heat shock proteins[J]. Biologia Plantarum, 2011, 55(1): 105-111. |
[45] | Bahrndorff S, Tunnacliffe A, Wise M J, et al. Bioinformatics and protein expression analyses implicate LEA proteins in the drought response of Collembola[J]. Journal of Insect Physiology, 2009, 55(3): 210-217. |
[46] | Lindemose S, Oshea C, Jensen M K, et al. Structure, function and networks of transcription factors involved in abiotic stress responses[J]. International Journal of Molecular Sciences, 2013, 14(3): 5842-5878. |
[47] | 唐益苗, 赵昌平, 高世庆, 等. 植物抗旱相关基因研究进展[J]. 麦类作物学报, 2009, 29(1): 166-173. |
[48] | 林凡云, 胡银岗, 宋国琦, 等. 糜子干旱后复水过程中基因表达谱的初步分析[J]. 西北农林科技大学学报: 自然科学版, 2007, 35(3): 81-85. |
[49] | 阳文龙. 牛耳草光合作用的脱水保护和复苏机理[D]. 北京: 中国科学院植物研究所, 2002. |
[50] | 刘玉冰. 荒漠复苏植物红砂抗旱机理的生理生态学特性研究[D]. 兰州: 兰州大学, 2006. |
[51] | Kim J M, To T K, Ishida J, et al. Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2012, 53(5): 847-856. |
[52] | Dobra J, Vankova R, Havlova M, et al. Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery[J]. Journal of Plant Physiology, 2011, 168(13): 1588-1597. |
[53] | 孙云南, 陈林波, 夏丽飞, 等. 干旱胁迫下茶树基因表达的AFLP分析[J]. 植物生理学报, 2012, 48(3): 241-246. |
[54] | Gupta S, Bharalee R, Bhorali P, et al. Molecular analysis of drought tolerance in tea by cDNA-AFLP based transcript profiling[J]. Molecular Biotechnology, 2013, 53(3): 237-248. |
[55] | Krishnaraj T, Gajjeraman P, Palanisamy S, et al. Identification of differentially expressed genes in dormant (banjhi) bud of tea [Camellia sinensis (L.) O. Kuntze] using subtractive hybridization approach[J]. Plant Physiology and Biochemistry, 2011, 49(6): 565-571. |
[56] | Das A, Das S, Mondal T K.Identification of differentially expressed gene profiles in young roots of tea [Camellia sinensis (L.) O. Kuntze] subjected to drought stress using suppression subtractive hybridization[J]. Plant Molecular Biology Reporter, 2012, 30(5): 1088-1101. |
[57] | 陈盛相, 齐桂年, 夏建冰, 等. 茶树在干旱条件下的 mRNA 差异表达[J]. 茶叶科学, 2012, 32(1): 53-58. |
[58] | Muoki R C, Paul A, Kumar S.A shared response of thaumatin like protein, chitinase, and late embryogenesis abundant protein3 to environmental stresses in tea [Camellia sinensis (L.) O. Kuntze][J]. Functional & Integrative Genomics, 2012, 12(3): 565-571. |
[59] | Li X W, Feng Z G, Yang H M, et al. A novel cold-regulated gene from Camellia sinensis, CsCOR1, enhances salt-and dehydration-tolerance in tobacco[J]. Biochemical and Biophysical Research Communications, 2010, 394(2): 354-359. |
[60] | Paul A, Muoki R C, Singh K, et al. CsNAM-like protein encodes a nuclear localized protein and responds to varied cues in tea [Camellia sinensis (L.) O. Kuntze][J]. Gene, 2012, 502(1): 69-74. |
[61] | Rana N K, Mohanpuria P, Yadav S K.Expression of tea cytosolic glutamine synthetase is tissue specific and induced by cadmium and salt stress[J]. Biologia Plantarum, 2008, 52(2): 361-364. |
[62] | 庄重光. 不同水分处理下铁观音茶树的生理机制及其差异蛋白质组学研究[D]. 福州: 福建农林大学, 2008. |
[63] | Jeyaramraja P R, Kumar R R, Pius P K, et al. Photoassimilatory and photorespiratory behaviour of certain drought tolerant and susceptible tea clones[J]. Photosynthetica, 2003, 41(4): 579-582. |
[64] | Mohanpuria P, Yadav S K.Characterization of novel small RNAs from tea (Camellia sinensis L.)[J]. Molecular Biology Reports, 2012, 39(4): 3977-3986. |
[65] | 杨维时, 江昌俊, 韦胡领, 等. 多抗香茶树品种简介[J]. 中国茶叶, 2009(10): 15. |
[66] | 郭春芳, 孙云, 陈常颂, 等. 茶树品种光合与水分利用特性比较及聚类分析[J]. 作物学报, 2008, 34(10): 1797-1804. |
[67] | 陈周一琪, 王志岚. 肯尼亚茶产业与茶树资源育种研究[J]. 中国农学通报, 2012, 28(19): 97-103. |
[68] | Bhattacharya A, Saini U, Joshi R, et al. Osmotin-expressing transgenic tea plants have improved stress tolerance and are of higher quality[J]. Transgenic Research, 2013, 22(129): 1-13. |
[69] | Miransari M.Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress[J]. Plant Biology, 2010, 12(4): 563-569. |
[70] | 郑芳. 茶树接种VA菌根生理生化特性的研究[D]. 武汉:华中农业大学, 2010. |
[71] | 彭晚霞, 宋同清, 肖润林, 等. 覆盖与间作对亚热带丘陵茶园土壤水分供应的调控效果[J]. 水土保持学报, 2005, 19(6): 97-101. |
[72] | Kigalu J M.Effects of planting density and drought on the productivity of tea clones (Camellia sinensis L.): Yield responses[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(15): 1098-1106. |
[73] | 单武雄, 罗文, 肖润林, 等. 连续5年施菜籽饼肥和稻草覆盖对茶园土壤生态系统的影响[J]. 中国生态农业学报, 2010, 18(3): 472-476. |
[74] | Upadhyaya H, Dutta B K, Panda S K.Zinc modulates drought induced biochemical damages in tea [Camellia sinensis (L) O Kuntze][J]. Journal of Agricultural and Food Chemistry, 2013, 61(27): 6660-6670. |
[75] | 吕文, 杨桂山, 万荣荣, 等. 太湖流域西部丘陵茶园修剪前后蒸散速率的比较分析[J]. 中国生态农业学报, 2013, 21(2): 184-191. |
[76] | 汪汇海, 沙丽清, 杨效东. 稻秸覆盖对有机茶园土壤生态环境影响的研究[J]. 中国生态农业学报, 2006, 14(4): 65-67. |
[77] | 张蕊, 白岗栓. 保水剂在农业生产中的应用及发展前景[J]. 农学学报, 2012, 2(7): 37-42. |
[78] | 赵霞, 黄瑞冬, 李潮海, 等. 农艺措施和保水剂对土壤蒸发和夏玉米水分利用效率的影响[J]. 干旱地区农业研究, 2013, 31(1): 101-106. |
[79] | 李倩, 刘景辉, 张磊, 等. 适当保水剂施用和覆盖促进旱作马铃薯生长发育和产量提高[J]. 农业工程学报, 2013, 29(7): 83-90. |
[80] | 李荣喜, 胡红莲, 黄永芳, 等. 6 种保水剂对油茶生长和光合特性的影响[J]. 经济林研究, 2012, 30(4): 47-51. |
[81] | 王志伟, 梁亚春, 刘文平, 等. 叶面喷施FA旱地龙对冬小麦产量和发育期的影响[J]. 干旱地区农业研究, 2009, 27(1): 68-72. |
[82] | 张国斌, 郁继华, 冯致, 等. NO和ABA对自毒作用下辣椒幼苗光合作用的影响[J]. 中国农业科学, 2013, 46(10): 2076-2084. |
[83] | Cao M, Liu X, Zhang Y, et al. An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants[J]. Cell Research, 2013, 23(8): 1043-1054. |
[84] | Upadhyaya H, Panda S K, Dutta B K.CaCl2 improves post-drought recovery potential in [Camellia sinensis (L) O. Kuntze][J]. Plant Cell Reports, 2011, 30(4): 495-503. |
[1] | CHEN Qiyu, MA Jianqiang, CHEN Jiedan, CHEN Liang. Genetic Diversity of Mature Leaves of Tea Germplasms Based on Image Features [J]. Journal of Tea Science, 2022, 42(5): 649-660. |
[2] | SUN Yue, WU Jun, WEI Chaoling, LIU Mengyue, GAO Chenxi, ZHANG Lingzhi, CAO Shixian, YU Shuntian, JIN Shan, SUN Weijiang. Screening of Tea Germplasm Resistant to Matsumurasca onukii and Dendrothrips minowai Priesner and Analysis of Resistance-related Factors [J]. Journal of Tea Science, 2022, 42(5): 689-704. |
[3] | WANG Yuyuan, LIU Renjian, LIU Shaoqun, SHU Canwei, SUN Binmei, ZHENG Peng. Expression Analysis and Functional Identification of CsTT2 R2R3-MYB Transcription Factor in Tea Plants [J]. Journal of Tea Science, 2022, 42(4): 463-476. |
[4] | FANG Mengrui, LÜ Jun, RUAN Jianyun, BIAN Lei, WU Chuanyu, YAO Qing. Tea Buds Detection Model Using Improved YOLOv4-tiny [J]. Journal of Tea Science, 2022, 42(4): 549-560. |
[5] | XING Anqi, WU Zichen, XU Xiaohan, SUN Yi, WANG Genmei, WANG Yuhua. Research Advances of Fluoride Accumulation Mechanisms in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 301-315. |
[6] | LIU Renjian, WANG Yuyuan, LIU Shaoqun, SHU Canwei, SUN Binmei, ZHENG Peng. Functional Identification of CsbHLH024 and CsbHLH133 Transcription Factors in Tea Plants [J]. Journal of Tea Science, 2022, 42(3): 347-357. |
[7] | ZHANG Zhipeng, CHENG Qinghua, XIE Jingkang, WAN Yuhe, TONG Huarong, CHEN Yingjuan. The Antifungal Effect and Mechanism of Berberine on Different Colletotrichum Species Causing Tea Brown Blight Disease [J]. Journal of Tea Science, 2022, 42(3): 367-375. |
[8] | YANG Ni, LI Yimin, Li Jingwen, TENG Ruimin, CHEN Yi, WANG Yahui, ZHUANG Jing. Effects of Exogenous 5-ALA on the Chlorophyll Synthesis and Fluorescence Characteristics and Gene Expression of Key Enzymes in Tea Plants under Drought Stress [J]. Journal of Tea Science, 2022, 42(2): 187-199. |
[9] | CHEN Xiaomin, ZHAO Feng, WANG Shuyan, SHAO Shuxian, WU Wenxi, LIN Qin, WANG Pengjie, YE Naixing. Purine Alkaloid Evaluation and Excellent Resources Screening of Fujian Wild Tea [J]. Journal of Tea Science, 2022, 42(1): 18-28. |
[10] | TANG Lei, XIAO Luodan, HUANG Yifan, XIAO Bin, GONG Chunmei. Cloning and Magnesium Transport Function Analysis of CsMGTs Genes in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2021, 41(6): 761-776. |
[11] | WU Wanfu, LYU Shidong, YANG Xuefang, LI Yue, ZHANG Jiguang. Study of Characteristic Indexes and Fatty Acid Composition in Big-leaf Tea Plant (Camellia sinensis var. assamica) Seed Oils from Yunnan Province [J]. Journal of Tea Science, 2021, 41(4): 463-470. |
[12] | LIU Dingding, WANG Junya, TANG Rongjin, CHEN Liang, MA Chunlei. Genome-wide Identification of PPR Gene Family and Expression Analysis of Albino Related Genes in Tea Plants [J]. Journal of Tea Science, 2021, 41(2): 159-172. |
[13] | ZHANG Qunfeng, NI Kang, YI Xiaoyun, LIU Meiya, RUAN Jianyun. Advances of Magnesium Nutrition in Tea Plant [J]. Journal of Tea Science, 2021, 41(1): 19-27. |
[14] | CHEN Yao, ZHANG Weifu, REN Hengze, XIONG Fei, ZHANG Haojie, YAO Lina, LIU ying, WANG Lu, WANG Xinchao, YANG Yajun, HAO Xinyuan. Genome-wide Investigation and Expression Analysis of DNA Demethylase Genes in Tea Plant (Camellia Sinensis) [J]. Journal of Tea Science, 2021, 41(1): 28-39. |
[15] | JIN Ke, HUANG Jian'an, XIONG Ligui, LIU Shuoqian, QIN Xiaohong, PENG Jing, LI Yinhua, LI Juan. Research of Theanine-related Genes Expressed in Etiolated Tea Plant (Camellia Sinensis) [J]. Journal of Tea Science, 2021, 41(1): 40-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|