Journal of Tea Science ›› 2014, Vol. 34 ›› Issue (4): 315-323.doi: 10.13305/j.cnki.jts.2014.04.001
XU Bin1,2, XUE Jinjin1,2, JIANG Heyuan1,*, ZHANG Jianyong1, WANG Yan1
Received:
2014-01-16
Revised:
2014-03-07
Online:
2014-08-15
Published:
2019-09-03
CLC Number:
XU Bin, XUE Jinjin, JIANG Heyuan, ZHANG Jianyong, WANG Yan. Review on Theasinensins in Tea[J]. Journal of Tea Science, 2014, 34(4): 315-323.
[1] | Tanaka T, Matsuo Y, Kouno I.A novel black tea pigment and two new oxidation products of epigallocatechin-3-O-gallate[J]. J Agric Food Chem, 2005, 53(19): 7571-7578. |
[2] | Roberts E A H, Cartwright R A, Oldschool M. The phenolic substance of manufactured tea. Ⅰ[J]. J sci Food Agric, 1957, 8(2): 72-80. |
[3] | Roberts E A H. The phenolic substance of manufactured tea. Ⅱ[J]. J sci Food Agric, 1958, 9(4): 212-216. |
[4] | Owuor P O, Reeves S G, Wanyoko J K.Correlation of theaflavins content and valuations of kenyan black teas[J]. J Agric Food Chem, 1986, 37(5): 507-513. |
[5] | Roberts E A H, Williams D M. The phenolic substance of manufactured tea. Ⅲ[J]. J Sci Food Agric, 1958, 9(4): 217-223. |
[6] | Roberts E A H, Williams D M. The phenolic substance of manufactured tea. Ⅳ[J]. J Sci Food Agric, 1959, 10(3): 167-172. |
[7] | Ferretti A, Flanagan I V P, Bondarovich H A, et al. The chemistry of tea structures of compounds A and B of roberts and reactions of some model compounds[J]. J Agric Food chem, 1968, 16(5): 756-761. |
[8] | Roberts E A H, Williams D M. The phenolic substance of manufactured tea. Ⅴ[J]. J Sci Food Agric, 1959, 10(3): 172-176. |
[9] | Nonaka G, kawahara O, Nishioka I. Tannins and related compounds XV. A new class of dimeric flavan-3-ol gallates, theasinensin A and theasinensinB, and proanthocyanidin gallates from green tea leaf[J]. Chem Pharm bull, 1983, 31(11): 3906-3914. |
[10] | Hashimoto F, Nonaka G, nishioka I. Tannins and related compounds. LXIX. Isolation and structure elucidation of B,B’-linked bisflavanoids, theasinensin D-G and oolongtheanin from oolong tea[J]. Chem Pharm Bull, 1988, 36(5): 1676-1684. |
[11] | Shii T, Tanaka T, Watarumi S, et al. Polyphenol composition of a functional fermented tea obtained by Tea-Rolling processing of green tea and loquat leaves[J]. J Agric Food Chem, 2011, 59(13): 7253-7260. |
[12] | Hashimoto F, Nonaka G, Nishioka I.Tannins and related compounds. CXIV. Structures of novel fermentation products, theogallinin, theaflavonin and desgalloyl theaflavonin from black tea, and changes of tea leaf polyphenols during fermentation[J]. Chem Pharm Bull, 1992, 40(6): 1383-1389. |
[13] | Parliament T H, Ho C T, Schieberle P, et al. Caffeinated beverages: Health Benefits, Physiological Effects and Chemistry[M]. Wasgington: American Chemical Society, 2000: 316-326. |
[14] | Tanaka T, Watarumi S, Matsuo Y, et al. Production of theasinensins A and D, epigallocatechin gallate dimers of black tea, by oxidation-reduction dismutation of dehydrotheasinensin A[J]. Tetrahedron, 2003, 59(40): 7939-7947. |
[15] | Tanaka T, Mine C, Watarumi S, et al. Accumulation of epigallocatechin quinone dimers during Tea fermentation and formation of theasinensins[J]. J Nat Prod, 2002, 65(11): 1582-1587. |
[16] | Hashimoto F, Nonaka G, Nishioka I.Tannins and related compounds.LXXVII. Novel chalcan-flavan d imers,assamicains A,B and C, and a new flavan-3-ol and proanthocyanidins from the fresh leaves of Camellia sinensin L. var. assamoca kitamura[J]. Chem Pharm Bull, 1989, 37(1): 77-85. |
[17] | Ho C T, Shahidi F.Phenolic compounds in foods and natural health products[M]. Washington: American Chemical Society, 2005: 188-196. |
[18] | Li Y, Tanaka T, Kouno I.Oxidative coupling of the pyrogallol B-ring with a galloyl group during enzymatic oxidation of epigallocatechin 3-O-gallate[J]. Phytochemistry, 2007, 68(7): 1081-1088. |
[19] | Sanga S, Yang I, Buckley B, et al. Autoxidative quinone formation in vitro and metabolite formation in vivo from tea polyphenol (-)-epigallocatechin-3-gallate: Studied by real-time mass spectrometry combined with tandem mass ion mapping[J]. Free Radical Biology and Medicine, 2007, 43(3): 362-371. |
[20] | Matsuo Y, Tanaka T, Kouno I.A new mechanism for oxidation of epigallocatechin and production of benzotropolone pigments[J]. Tetrahedron, 2006, 62(20): 4774-4783. |
[21] | Roberts E A H, Myers M. The phenolic substance of manufactured tea. Ⅵ. The preparation of theaflavin and of theaflavin gallate[J]. J Sci Food Agric, 1959, 10(4): 176-179. |
[22] | 宛晓春, 黄继轸, 沈生荣, 等. 茶叶生物化学[M]. 北京: 中国农业出版社, 2007: 180-184. |
[23] | Yoshino K, Suzuki M, Sasaki K, et al. Formation of antioxidants from (2)-epigallocatechin gallate in mild alkaline fluids, such as authentic intestinal juice and mouse plasma[J]. J Nutr Biochem, 1999, 10(4): 223-229. |
[24] | Kusano R, Andou K, Fujieda M, et al. Polymer-Like Polyphenols of Black Tea and Their Lipase and Amylase Inhibitory Activities[J]. Chem Pharm Bull, 2008, 56(3): 266-272. |
[25] | Shii T, Miyamoto M, Matsuo Y, et al. Biomimetic one-pot preparation of a black tea polyphenol theasinensin A from epigallocatechin gallate by treatment with copper(II) chloride and ascorbic acid[J]. J Chem Pharm Bull, 2011, 59(9): 1183-1185. |
[26] | Neilson A P, Song B J, Sapper T N, et al. Tea catechin auto-oxidation dimers are accumulated and retained by Caco-2 human intestinal cells[J]. Nutrition Research, 2010, 30(5): 327-340. |
[27] | Tanaka T, Watarumi S, Fujieda M, et al. New black tea polyphenol having N-ethyl-2-pyrrolidinone moiety derived from tea amino acid theanine: isolation, characterization and partial synthesis[J]. Food Chemistry, 2005, 93(1): 81-87. |
[28] | Qiu J, Kitamura Y, Miyata Y, et al. Transepithelial transport of theasinensins through Caco-2 cell monolayers and their absorption in sprague-dawley rats after oral administration[J]. J Agric Food Chem, 2012, 60(32): 8036-8043. |
[29] | Shibamoto T, Terao J, Osawa T, et al. Functional foods for disease prevention I[M]. Washington: American Chemical Society, 1998: 209-216. |
[30] | Morello M J. Shahidi F, Ho C T.Free Radicals in Food[C]. Washington: American Chemical Society, 2002: 213-223. |
[31] | Hashimoto F, Ono M, Masuoka C, et al. Evaluation of the anti-oxidative effect (in vitro) of tea polyphenols[J]. Biosci Biotechnol Biochem, 2003, 67(2): 396-401. |
[32] | Saeki K, Sano M, Miyase T, et al. Apoptosis-inducing activity of polyphenol compounds derived from tea catechins in human histiolytic lymphoma U937 cell[J]. Biosci Biotechnol Biochem, 1999, 63(3): 585-587. |
[33] | Pan M H, Liang Y C, Lin-Shiau S Y, et al. Induction of Apoptosis by the Oolong Tea Polyphenol Theasinensin A through Cytochrome c Release and Activation of Caspase-9 and Caspase-3 in Human U937 Cells[J]. J Agric Food Chem, 2000, 48(12): 6337-6346. |
[34] | Shahidi F, Ho C T, Watanabe S, et al. Food factors in health promotion and disease prevention[M]. Washington: American Chemical Society, 2003: 50-71. |
[35] | Hou D X, Masuzaki S, Tanigawa S, et al. Oolong Tea Theasinensins Attenuate Cyclooxygenase-2 Expression in Lipopolysaccharide (LPS)-Activated Mouse Macrophages: Structure-Activity Relationship and Molecular Mechanisms[J]. J Agric Food Chem, 2010, 58(24): 12735-12743. |
[36] | Chena J H, Qina S, Xiaob J P, et al. A genome-wide microarray highlights the antiinflammatory genes targeted by Oolong tea theasinensin A in macrophages[J]. J Nutrition and Cancer, 2001, 63(7): 1064-1073. |
[37] | Hatano T, Kusuda1 M, Hori M, et al. Theasinensin A, a tea polyphenol formed from (-)-epigallocatechin gallate, suppresses antibiotic resistance of methicillin-resistant staphylococcus aureus[J]. Planta Med, 2003, 69(11): 984-989. |
[38] | Taylor P W, Hamilton-Miller J, Stapleton P D.Antimicrobial properties of green tea catechins[J]. Food Sci Technol Bull, 2005, 16(2): 71-81. |
[39] | Isaacs C E, Xu W M, Merz G, et al. Digallate dimers of (-)-epigallocatechin gallate Inactivate herpes simplex virus[J]. Antimicrob Agents Chemother, 2011, 55(12): 5646-5653. |
[40] | Toshima A, Matsui T, Noguchi M, et al. Identification of α-glucosidase inhibitors from a new fermented tea obtained by tea-rolling processing of loquat (Eriobotrya japonica) and green tea leaves[J]. J Sci Food Agric, 2010, 90(9): 1545-1550. |
[41] | Miyata Y, Tanaka T, Tamaya K, et al. Cholesterol-Lowering Effect of Black Tea Polyphenols, Theaflavins, Theasinensin A and Thearubigins[J]. Food Science and Technology Research, 2011, 17(6): 585-588. |
[42] | Mokdad A H, Ford E S, Bowman B A, et al. Prevalence of Obesity, Diabetes, and Obesity-Related Health Risk Factors[J]. JAMA, 2003, 289(1): 76-79. |
[43] | Sturm R.The Effects of Obesity, Smoking, And Drinking on Medical Problems And Costs[J]. Health Affairs, 2002, 21(2): 245-253. |
[44] | Nakai M, Fukui Y, Asami S, et al.Inhibitory effects of Oolong tea polyphenols on pancreatic lipase in vitro [J]. J Agric Food Chem, 2005, 53(11): 4593-4598.===Yuko F, Takashi I, Sumio A, et al. Structures and biological activity of oolong tea polymerized polyphenols and quantification by LC-MSMS[C]//The Chemical Society of Japan, The Pharmaceutical Society of Japan, The Japanese Society for Agricultural Chemistry. Symposium on the chemistry of natural products: 50. Tokyo: The Chemical Society of Japan, 2008, 475-480. Inhibitory effects of Oolong tea polyphenols on pancreatic lipase in vitro [J]. J Agric Food Chem, 2005, 53(11): 4593-4598.===Yuko F, Takashi I, Sumio A, et al. Structures and biological activity of oolong tea polymerized polyphenols and quantification by LC-MSMS[C]//The Chemical Society of Japan, The Pharmaceutical Society of Japan, The Japanese Society for Agricultural Chemistry. Symposium on the chemistry of natural products: 50. Tokyo: The Chemical Society of Japan, 2008, 475-480. http://ci.nii.ac.jp/ naid/110007066723/en |
[45] | Matsuo Y, Hayashi T, Saito Y, et al. Structures of enzymatic oxidation products of epigallocatechin[J]. Tetrahedron, 2013, 69(42): 8952-8958. |
[1] | GAO Jianjian, CHEN Dan, PENG Jiakun, WU Wenliang, CAI Liangsui, CAI Yawei, TIAN Jun, WAN Yunlong, SUN Weijiang, HUANG Yan, WANG Zhe, LIN Zhi, DAI Weidong. Comparison on Chemical Components of Yunnan and Fuding White Tea Based on Metabolomics Approach [J]. Journal of Tea Science, 2022, 42(5): 623-637. |
[2] | CHEN Qiyu, MA Jianqiang, CHEN Jiedan, CHEN Liang. Genetic Diversity of Mature Leaves of Tea Germplasms Based on Image Features [J]. Journal of Tea Science, 2022, 42(5): 649-660. |
[3] | LI Yanchun, WANG Hang, LI Zhaowei, YE Jing, WANG Yixiang. Ameliorative Effect of Several Measures on Soil Physicochemical Properties and Microbial Community Structures in Acidified Tea Gardens [J]. Journal of Tea Science, 2022, 42(5): 661-671. |
[4] | SUN Yue, WU Jun, WEI Chaoling, LIU Mengyue, GAO Chenxi, ZHANG Lingzhi, CAO Shixian, YU Shuntian, JIN Shan, SUN Weijiang. Screening of Tea Germplasm Resistant to Matsumurasca onukii and Dendrothrips minowai Priesner and Analysis of Resistance-related Factors [J]. Journal of Tea Science, 2022, 42(5): 689-704. |
[5] | CHEN Yuhong, GAO Ying, HAN Zhen, YIN Junfeng. Analysis of the Saponin Contents and Composition in Tea Seeds of Different Germplasms [J]. Journal of Tea Science, 2022, 42(5): 705-716. |
[6] | CHEN Hui, YANG Liling, CHEN Jinhua, HUANG Jian'an, GONG Yushun, LI Shi. Effect of Temperature-controlled Pile-fermentation on Aroma Quality of Primary Dark Tea [J]. Journal of Tea Science, 2022, 42(5): 717-730. |
[7] | LI Zheng, LIU Ding, HUO Zenghui, CHEN Fuqiao. Analysis on the Competitiveness and Complementarity of Tea Trade between China and RCEP Members [J]. Journal of Tea Science, 2022, 42(5): 740-752. |
[8] | WANG Yuyuan, LIU Renjian, LIU Shaoqun, SHU Canwei, SUN Binmei, ZHENG Peng. Expression Analysis and Functional Identification of CsTT2 R2R3-MYB Transcription Factor in Tea Plants [J]. Journal of Tea Science, 2022, 42(4): 463-476. |
[9] | LI Jing, LIN Cairong, HUANG Yan, DENG Xuming, WANG Yiqing, SUN Weijang. Effects of Tea Polyphenols on Agrobacterium-mediated Plant Genetic Transformation System [J]. Journal of Tea Science, 2022, 42(4): 477-490. |
[10] | ZHAO Dongwei. Nomenclature, Typification, and Natural Distribution of Camellia sinensis var. assamica (Theaceae) [J]. Journal of Tea Science, 2022, 42(4): 491-499. |
[11] | LIU Jianjun, ZHANG Jinyu, PENG Ye, LIU Xiaobo, YANG Yun, HUANG Tao, WEN Beibei, LI Meifeng. Effects of Light Waves on the Aroma Substances of Fresh Tea Leaves in Summer and Autumn During Spreading and the Quality of Final Green Tea [J]. Journal of Tea Science, 2022, 42(4): 500-514. |
[12] | ZHANG Yinggen, XIANG Lihui, CHEN Lin, LIN Qingxia, SONG Zhenshuo, WANG Lili. Effects of Air Conditions Preset for Withering on Flavor Quality and Chemical Profiles of White Teas [J]. Journal of Tea Science, 2022, 42(4): 525-536. |
[13] | LI Ziqiang, YANG Mei, ZHANG Xinzhong, LUO Fengjian, ZHOU Li, LOU Zhengyun, SUN Hezhi, WANG Xinru, CHEN Zongmao. Residue Determination of Sixteen Pesticides in Green Tea by UPLC-MS/MS [J]. Journal of Tea Science, 2022, 42(4): 537-548. |
[14] | FANG Mengrui, LÜ Jun, RUAN Jianyun, BIAN Lei, WU Chuanyu, YAO Qing. Tea Buds Detection Model Using Improved YOLOv4-tiny [J]. Journal of Tea Science, 2022, 42(4): 549-560. |
[15] | SUN Ying, CHEN Xin, YANG Hua, YING Jian, SHAO Danqing, LÜ Xiaohua, XIAO Jie, CHEN Zhixiong, LI Song, QIN Junjie, ZHENG Bin, GAO Jianshe. Clinical Trial on the Effect of Drinking Jinhua Xiangyuan Tea for 3 Months on the Improvement of Glucose and Lipid Metabolism in A Small Sample Hyperlipidemia Population [J]. Journal of Tea Science, 2022, 42(4): 561-576. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|