Journal of Tea Science ›› 2014, Vol. 34 ›› Issue (6): 531-540.doi: 10.13305/j.cnki.jts.2014.06.013
YAN Changyu1,2, REN Qiujing1, CHEN Xiaofang1, LI Bin1,*, CHEN Zhongzheng1,*
Received:
2014-06-19
Revised:
2014-08-18
Online:
2014-12-20
Published:
2019-09-03
CLC Number:
YAN Changyu, REN Qiujing, CHEN Xiaofang, LI Bin, CHEN Zhongzheng. Research Progress of N- methyltransferases Involved in Caffeine Biosynthesis[J]. Journal of Tea Science, 2014, 34(6): 531-540.
[1] | Ashihara H, Sano H, Crozier A.Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering[J]. Phytochemistry, 2008, 69: 841-856. |
[2] | Negishi O, Ozawa T, Imagawa H.Methylation of xanthosine by tea-leaf extracts and caffeine biosynthesis[J]. Agric Biol Chem, 1985, 49(3): 887-890. |
[3] | Ashihara H.Purine metabolism and the biosynthesis of caffeine in mate leaves[J]. Phytochemistry, 1993, 33(6): 1427-1430. |
[4] | Koyama Y, Tomoda Y, Kato M, et al. Metabolism of purine bases, nucleosides and alkaloids in theobromine-forming theobroma cacao leaves[J]. Plant Physiol Biochem, 2003, 41: 977-984. |
[5] | Yoneyama N, Morimoto H, Ye CX, et al. Substrate specificity of N-methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme[J]. Mol Gen Genom, 2006, 275: 125-135. |
[6] | Kato M, Kanehara T, Shimizu H.Caffeine biosynthesis in young leaves of Camellia sinesis: in vitro studies on N-methyltransferase activity involved in the conversion of xanthosine to caffeine[J]. Plant Physiol, 1996, 3(98): 629-636. |
[7] | 耿敬章, 徐福星. 生物碱生理功能及其提取分离研究进展[J]. 粮食与油脂, 2007(4): 44-46. |
[8] | 周晨阳, 金基强, 姚明哲, 等. 茶树等植物中嘌呤生物碱代谢研究进展[J]. 茶叶科学, 2011, 1(2): 87-94. |
[9] | 吴命燕, 范方媛, 梁月荣, 等. 咖啡碱的生理功能及其作用机制[J]. 茶叶科学, 2010, 30(4): 235-242. |
[10] | Nawrot P, Jordan S, Eastwood J, et al. Effects of caffeine on human health[J]. Food Addit Contam, 2003, 20(1): 1-30. |
[11] | Hollingsworth R G, Armstrong J W, Campbell E.Caffeine as a repellent for slugs and snail: at high concentrations this stimulant becomes a lethal neurotoxin to garden pests[J]. Nature, 2002, 417: 915-916. |
[12] | Almeida A A P, Farah A, Silva D A M. Antibacterial activity of coffee extracts and selected coffee chemical compounds against Enterobacteria[J]. Agric Food Chem, 2006, 54(23): 8738-8743. |
[13] | 张华艳, 戚丽, 张正竹, 等. 咖啡碱对茶树主要叶部病原真菌的抑制作用[J].南京农业大学学报, 2010, 33(2): 63-67. |
[14] | Kato M, Mizuno K, Fujimura T, et al. Purification and characterization of caffeine synthase from tea leaves[J]. Plant Physiol, 1999, 120: 586-597. |
[15] | Schulthess B H, Morath P, Baumann T W.Caffeine biosynthesis starts with the metabolically channeled formation of 7-methyl-XMP—A new hypothesis[J]. Phytochemistry, 1996, 41(1): 169-175. |
[16] | Suzuki T, Ashihara H, Waller G R.Purine and purine alkaloid metabolism in Camellia and Coffee plants[J]. Phytochemistry, 1992, 31: 2575-2584. |
[17] | Negishi O, Ozawa T, Imagawa H.Methylation of xanthosine by tea-leaf extracts and caffeine biosynthesis[J]. Agric Biol Chem, 1985, 49(3): 887-890. |
[18] | Waldhauser SSM, Gillies FM, Crozier A, et al. Separation of the N-7 methyltransferase, the key enzyme in caffeine biosynthesis[J]. Phytochemistry, 1997, 45(7): 1407-1414. |
[19] | Mazzafera P, Wingsle G, Olsson O, et al. S-adenosyl-lmethionine:theobromine 1-N-methyltransferase, an enzyme catalyzing the synthesis of caffeine in coffee[J]. Phytochemistry, 1994, 37: 1577-1584. |
[20] | Gillies F M, Jenkins G I, Ashihara H, et al. In vitro biosynthesis of caffeine: stability of N-methyltransferase activity in cell-free preparations from liquid endosperm of Coffea Arabica[C]. Association Scientifique Internationale du CaféIn. Proceedings of the 16th International Symposium on Coffee Science, Kyoto. 1995: 599-605. |
[21] | Simone S, Mosli Waldhauser, Fiona M, et al. Separationing of the N-7-methyltransferase, the key enzyme in caffeine biosynthesis[J]. Phytochemistry, 1997, 45(7): 1407-1414. |
[22] | Ogawa M, Herai Y, Koizumi N, et al. 7-Methylxanthine methyltransferase of coffee plants[J]. Bio Chem, 2001, 276: 8213-8218. |
[23] | Uefuji H, Ogita S, Yamaguchi Y, et al. Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants[J]. Plant Physiol, 2003, 132(1): 372-380. |
[24] | Suzuki T, Takahashi E.Biosynthesis of caffeine by tea leaves enzymic formation of theobromine from 7-methylxanthine and of caffeine from theobromine[J]. Biochemistry, 1975, 1(46): 79-85. |
[25] | Kato M, Mizuno K, Crozier A, et al. A gene encoding caffeine synthase from tea leaves[J]. Nature, 2000, 406: 956-957. |
[26] | Ashihara H, Kato M, Ye C X.Biosynthesis and metabolism of purine alkaloids in leaves of cocoa tea (Camellia ptilophylla)[J]. Plant Research, 1998, 111: 599-604. |
[27] | Moisyadi S, Neupane K R, Stiles J I.Cloning and characterization of a cDNA encoding xanthosine-N-7- methyltransferase from coffee (Coffea arabica L.)[J]. Acta Hortic, 1998, 461: 367-378. |
[28] | Camellia sinensis TCSz Mrna for caffeine synthase, complete cds[DB]. complete cds[DB]. http://www.ncbi.nlm.nih.gov/nuccore/AB031281. |
[29] | Camellia sinensis caffeine synthase mRNA, complete cds[DB]. complete cds[DB]. http://www.ncbi.nlm.nih.gov/ nuccore/AY907710. |
[30] | Camellia sinensis caffeine synthase gene, complete cds[DB]. complete cds[DB]. http://www.ncbi.nlm.nih.gov/nuccore/No. EF526217. |
[31] | 金基强, 姚明哲, 马春雷, 等. 合成茶树咖啡碱相关的N-甲基转移酶基因家族的克隆及序列分析[J]. 茶叶科学, 2014, 3(2): 188-194. |
[32] | Ishida M, Kitao N, Mizuno K, et al. Occurrence of theobromine synthase genes in purine alkaloid-free species of Camellia plants[J]. Planta, 2009(3): 559-568. |
[33] | Mizuno K, Kato M, Irino F, et al. The first committed step reaction of caffeine biosynthesis: 7-methylxanthosine synthase is closely homologous to caffeine synthase coffee (Coffea arabica L.)[J]. FEBS Lett, 2003a, 547: 56-60. |
[34] | Mizuno K, Okuda A, Kato M, et al. Isolation of a new dual-functional caffeine synthase gene encoding an enzyme for the conversion of 7-methylxanthineto caffeine from coffee (Coffea arabica L.)[J]. FEBS Lett, 2003b, 534: 75-81. |
[35] | Camellia sinensis caffeine synthase gene, complete cds[DB]. complete cds[DB]. http://www.ncbi.nlm.nih.gov/nuccore/AY273813. |
[36] | Caffeine synthase and its use[DB]. Caffeine synthase and its use[DB]. http://www. ncbi.nlm.nih.gov/ nuccore/DJ428086 |
[37] | Andrew A. Mc Carthy, Laurent Biget, Chenwei Lin, et al. Cloning, expression, crystallization and preliminary X-ray analysis of the XMT and DXMT N-methyltransferases from Coffea canephora (robusta)[J]. Acta Cryst, 2007, F63: 304-307. |
[38] | Figueirêdo L C, Faria-Campos A C, Astolfi-Filho S, et al. Identification and isolation of full-length cDNA sequences by sequencing and analysis of expressed sequence tags from guarana(Paullinia cupana)[J]. Genet Mol Res, 2011, 10(2): 1188-1199. |
[39] | 余有本, 江昌俊, 王朝霞, 等. 茶树咖啡碱合酶cDNA在大肠杆菌中的表达[J]. 南京农业大学学报, 2004, 27(4): 105-109. |
[40] | 周英. 茶叶N-甲基转移酶、SAM合成酶基因克隆的研究[D]. 广州: 华南农业大学, 2004: 51. |
[41] | 陈丽萍, 陈忠正, 李斌, 等. 南昆山毛叶茶等茶树资源N-甲基转移酶基因的克隆与序列分析[J]. 食品科学, 2006, 27(7): 99-103. |
[42] | 文海涛. 南昆山毛叶茶天然低咖啡碱代谢分子机理研究[D]. 广州: 华南农业大学, 2008: 64. |
[43] | 许煜华. 茶叶咖啡碱合成N-甲基转移酶基因克隆和功能鉴定[D]. 广州: 华南农业大学, 2011: 50. |
[44] | Andrew A. Mc Carthy, James G. Mc Carthy.The structure of two N-methyltransferases from the caffeine biosynthetic pathway[J]. Plant Physiol, 2007, 144(2): 879-889. |
[45] | Kouichi Mizuno, Shin-ichi Kurosawa, Yuko Yoshizawa, et al. Essential region for 3-N methylation in N-methyltransferases involved in caffeine biosynthesis[J]. ZNATURFORSCH C, 2010, 65(3/4): 257-265. |
[46] | 金璐. 茶树咖啡碱合成途径研究及其分子调控[D]. 合肥: 安徽农业大学, 2012: 44-47. |
[47] | 焦义. 茶叶咖啡碱合成N-甲基转移酶克隆及结构与功能研究[D]. 广州: 华南农业大学, 2013: 55-56. |
[48] | Kato A, Crozier A, Ashihara A.Subcellular localization of the N-methyltransferase involved in caffeine biosynthesis tea[J]. Phytochemistry, 1998, 48(5): 777-779. |
[49] | 李远华, 江昌俊, 宛晓春. 茶树咖啡碱合成酶基因mRNA表达的研究[J]. 茶叶科学, 2004, 24(1): 23-28. |
[50] | 章爱军. 茶树染色体核型分析及TCS基因在染色体上初步定位[D]. 合肥: 安徽农业大学, 2005: 31. |
[51] | Breda S V, Merwe C F, Robbertse H.Immunohistochemical localization of caffeine in young Camellia sinensis (L.) O. Kuntze (tea) leaves[J]. Planta, 2013, 237: 849-858. |
[52] | Maluf M P, Silva C C, Oliveira M, et al. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea Arabica[J]. Genet Mol Biol, 2009, 32(4): 802-810. |
[53] | Mohanpuria P, Kumar V, Yadav SK.Tea caffeine: metabolism, function and reduction strategies[J]. Food Sci Biotechnol, 2010, 19(2): 275-287. |
[54] | 夏力飞, 陈林波, 梁名志, 等. 特异茶树资源生物碱测定及相关基因表达分析[J]. 西南农业大学学报, 2013, 26(3): 947-949. |
[55] | 李金, 魏艳丽, 庞磊, 等. 茶树咖啡碱合成途径中TCS1、TIDH、SAMS的基因表达量差异及其与咖啡碱含量的相关性[J]. 江苏农业科学, 2013, 41(10): 21-23. |
[56] | Koshiishi C, Ito E, Kato A, et al. Purine alkaloid biosynthesis in young leaves of Camellia sinensis in light and darkness[J]. Plant Research, 2000, 113: 217-221. |
[57] | Aneja M, Gianfagna T.Induction and accumulation of caffeine in young, actively growing leaves of cocoa (Theobroma cacao L.) by wounding or infection with Crinipellis perniciosa[J]. Physiol Mol Plant Pathol, 2001, 59: 13-16. |
[58] | Bailey B A, Bae H, Strem M D, et al. Development alexpression of stress response genes in Theobroma cacao leaves and their response to Nep1 treatment and a compatible infection by Phytophthoramegakarya[J]. Plant Physiol Biochem, 2005, 43: 611-622. |
[59] | Misako Kato, Naoko kitao, Mariko Ishida, et al. Expression for caffeine biosynthesis and related enzymes in Camellia sinensis[J]. Z Naturforshi, 65c, 2010: 245-256. |
[60] | Ogita S, Uefuji H, Morimoto M, et al. Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties[J]. Plant Mol Biol, 2004, 54: 931-941. |
[61] | Mohanpuria P, Kumar V, Ahuja P S, et al. Producing low-caffeine tea through post-transcriptional silencing of caffeine synthase gene[J]. Plant Mol Biotechnol, 2011a, 76: 523-534. |
[62] | Mohanpuria P, Kumar V, Ahuja P S, et al. Agrobacterium-mediated silencing of caffeine synthesis though root transformation in Camellia sinensis[J]. Plant Mol Biotechnol, 2011b, 48: 235-243. |
[1] | CHEN Dequan, ZHU Yan, ZOU Chun, YIN Junfeng, CHEN Jianxin, XU Yongquan. Research Progress of Tea Beer [J]. Journal of Tea Science, 2022, 42(2): 169-178. |
[2] | SHI Yali, ZHU Yin, MA Wanjun, YANG Gaozhong, WANG Mengqi, SHI Jiang, PENG Qunhua, LIN Zhi, LYU Haipeng. Research Progress on the Volatile Compounds of Premium Roasted Green Tea [J]. Journal of Tea Science, 2021, 41(3): 285-301. |
[3] | LU Li, CHENG Xi, ZHANG Bo, SHEN Xiaoxia, LIU Yan, XIONG Li, YUAN Xiao, LI Yuanhua, LI Xinghui. Establishment of Predictive Model for Quantitative Analysis of Tea Polyphenols and Caffeine of Souchong by Near Infrared Spectroscopy [J]. Journal of Tea Science, 2020, 40(5): 689-695. |
[4] | GAO Chenxi, HUANG Yan, SUN Weijiang. Research Progress of Proanthocyanidins in Tea [J]. Journal of Tea Science, 2020, 40(4): 441-453. |
[5] | MA Wanjun, MA Shicheng, LIU Chunmei, LONG Zhirong, TANG Baojun, LIN Zhi, LYU Haipeng. Research Progress on Chemical Composition and Biological Activity of Liupao Tea [J]. Journal of Tea Science, 2020, 40(3): 289-304. |
[6] | ZHENG Chengqin, MA Cunqiang, ZHANG Zhengyan, LI Xiaohong, WU Tingting, ZHOU Binxing. A Preliminary Study on the Degradation Pathway of Caffeine in Tea Microbial Solid-state Fermentation [J]. Journal of Tea Science, 2020, 40(3): 386-396. |
[7] | LI Xiwang, LIU Fengjing, SHAO Shengrong, SU Liang, JIN Limeng, LOU Yonggen, SUN Xiaoling. Research Progress and Prospect of Green Control Techniques of Ectropis obliqua [J]. Journal of Tea Science, 2017, 37(4): 325-331. |
[8] | MA Cunqiang, ZHOU Binxing, WANG Hongzhen, WANG Pan. Screen and Identification of Fungi Strain Degrading Caffeine in Pu-erh Tea during Solid-state Fermentation [J]. Journal of Tea Science, 2017, 37(2): 211-219. |
[9] | TANG Yuwei, LIU Liping, WANG Ruoxian, CHEN Yuhong, LIU Zhonghua, LIU Shuoqian. Development of a CRISPR/Cas9 Constructed for Genome Editing of Caffeine Synthase in Camellia sinensis [J]. Journal of Tea Science, 2016, 36(4): 414-426. |
[10] | SONG Shuang, HUANG Ye-wei, WANG Xuan-jun, YU Hai-shuang, FANG Chong-ye, SHENG Jun, HAO Shu-mei. Determination of Conjugated Caffeine in Tea by Low-pH Precipitation Method [J]. Journal of Tea Science, 2013, 33(4): 322-326. |
[11] | LI Jun, GUO Xiao-guan, PANG Hong-yu, ZHU Fu-jian, WANG Zhen, LAI Fei. Contents of Caffeine and Catechin in Guizhou Green Tea [J]. Journal of Tea Science, 2012, 32(6): 480-484. |
[12] | WANG Xue-min, YAO Ming-zhe, JIN Ji-qiang, MA Chun-lei, CHEN Liang. Analysis of Caffeine Content and Molecular Variance of Low-caffeine Tea Plants [J]. Journal of Tea Science, 2012, 32(3): 276-282. |
[13] | YANG Li-cong, ZHENG Guo-dong, WANG Chun-rong, LI Dong-ming. Combined Effects of Caffeine and Catechins on the Body Weight and Lipid Metabolism in Mice [J]. Journal of Tea Science, 2010, 30(5): 374-378. |
[14] | XU Wen-ping, LI Da-xiang, ZHANG Zheng-zhu, TANG Qian, WAN Xiao-chun. The Nonlinear Regression of Bitterness and Astringency of Main Compounds in Green Tea and the Application in Organoleptic Tests [J]. Journal of Tea Science, 2010, 30(5): 399-406. |
[15] | WU Ming-yan, FAN Fang-yuan, LIANG Yue-rong, ZHENG Xin-qiang, LU Jian-liang. The Physiological Functions of Caffeine and Their Related Mechanisms [J]. Journal of Tea Science, 2010, 30(4): 235-242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|