[1] 林炳昌. 模拟移动床色谱技术[M]. 北京: 化学工业出版社, 2008: 1. [2] Broughton D B, Gerhold C G. Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets: US, 2985589[P].1961-5-23. [3] Universal Oil Products Co. Understanding the SorbexTM Process [EB/OL]. [2010-08-02]. http://www.uop.com/. [4] Long N V D, Le T H, Kim J I, et al. Separation of D-psicose and D-fructose using simulated moving bed chromatography[J]. Journal of Separation Science, 2009, 32(11): 1987-1995. [5] Makart S, Bechtold M, Panke S.Separation of amino acids by simulated moving bed under solvent constrained conditions for the integration of continuous chromatography and biotransformation[J]. Chemical Engineering Science, 2008, 63(21): 5347-5355. [6] Rajendranb A, Paredesa G, Mazzotti M.Simulated moving bed chromatography for the separation of enantiomers[J]. Journal of Chromatography A, 2009, 1216(4): 709-738. [7] Juza M, Mazzotti M, Morbidelli M.Simulated moving-bed chromatography and its application to chirotechnology[J]. Trends in Biotechnology, 2000, 18(3): 108-118. [8] Kaiser P, Ottolina G, Carrea G, et al. Preparative-scale separation by simulated moving bed chromatography of biocatalytically produced regioisomeric lactones[J]. New Biotechnology, 2009, 25(4): 220-225. [9] Wei F, Zhao Y X.Separation of capsaicin from capsaicinoids by simulated moving bed chromatography[J]. Journal of Chromatography A, 2008, 1187(1/2): 281-284. [10] 赵雪飞, 高丽娟, 赖仕全. 模拟移动床色谱法分离C60的条件选择[J]. 辽宁科技大学学报, 2008, 31(3/4): 225-228. [11] Olivier L H, Marc N R. Process and device for separation with variable-length chromatographic zones: US, 6712973[P].2004-03-30. [12] Zhang Z Y, Mazzotti M, Morbidelli M.PowerFeed operation of simulated moving bed units: changing flow-rates during the switching interval[J]. Journal of Chromatography A, 2003, 1006(1/2): 87-99. [13] Kawajiri Y, Biegler L T.Optimization strategies for simulated moving bed and PowerFeed processes[J]. American Institute of Chemical Engineers Journal, 2007, 52(4): 1343-1350. [14] Schramm H, Kaspereit M, Kienle A, et al. Simulated moving bed process with cyclic modulation of the feed concentration[J]. Journal of Chromatography A. 2003, 1006(1/2): 77-86. [15] Schramm H, Kaspereit M, Kienle A, et al. Improving simulated moving bed processes by cyclic modulation of the feed concentration[J]. Chem Eng Technol, 2002, 25(12): 1151-1155. [16] Keßler L C, Seidel-Morgenstern A.Improving performance of simulated moving bed chromatography by fractionation and feed-back of outlet streams[J]. Journal of Chromatography A, 2008, 1207(1/2): 55-71. [17] Migliorini C, Wendlinger M, Mazzotti M.Temperature gradient operation of a simulated moving bed unit[J]. Ind Eng Chem Res, 2001, 40(12): 2606-2617. [18] Mun S Y, Wang N H L. Optimization of productivity in solvent gradient simulated moving bed for paclitaxel purification[J]. Process Biochemistry, 2008, 43(12): 1407-1418. [19] Mun S Y.Enhanced Separation Performance of a Five-Zone Simulated Moving Bed Process by Using Partial Collection Strategy Based on Alternate Opening and Closing of a Product Port[J]. Industrial & Engineering Chemistry Research, 2010, 49(19): 9258-9270. [20] Paredes G, Abel S, Mazzotti M, et al. Analysis of a Simulated Moving Bed Operation for Three-Fraction Separations (3F-SMB)[J]. Ind Eng Chem Res, 2004, 43(19): 6157-6167. [21] 钟世安, 周春山, 杨娟玉. 高效液相色谱法分离纯化酯型儿茶素的研究[J]. 化学世界, 2003, 44(5): 237-239, 245, 249. [22] 张莹, 施兆鹏, 聂洪勇, 等. 制备型逆流色谱分离绿茶提取物中儿茶素单体[J]. 湖南农业大学学报, 2003, 29(5): 408-411, 417. [23] 姜绍通, 黄静, 潘丽军, 等. 儿茶素单体的分离纯化方法: 中国, 1603319[P], 2005-04-06. [24] 蔡宇杰, 丁彦蕊, 张大兵, 等. 模拟移动床色谱技术及其应用[J]. 色谱, 2004, 22(2): 111-115. [25] 张家元, 林炳昌. 三带模拟移动床色谱的实验研究[J]. 鞍山钢铁学院学报, 1999(3): 144-148. [26] Ludemann-Hombourger O, Nicoud, R M, Bailly M. The Varicol Process: A New Multicolumn Continuous Chromatographic Process[J]. Sep Sci Technol, 2000, 35(12): 1829-1862. [27] Zhang Z Y, Hidajat K, Ray A K, et al. Multiobjective Optimization of SMB and Varicol Process for Chiral Separation[J]. AIChE Journal, 2002, 48(12): 2800-2816. [28] Toumi A, Engell S, Ludemann-Hombourger O, et al. Optimization of simulated moving bed and Varicol processes[J]. Journal of Chromatography A, 2003, 1006(1/2): 15-31. [29] Zhang Z Y, Mazzotti M, Morbidelli M.Continuous Chromatographic Processes with a Small Number of Columns: Comparison of Simulated Moving Bed with Varicol, PowerFeed, and ModiCon[J]. Korean J Chem Eng, 2004, 21(2): 454-464. [30] Zhang Y, Hidajat K, Ray A K.Multi-objective optimization of simulated moving bed and Varicol processes for enantio-separation of racemic pindolol[J]. Separation and Purification Technology, 2009, 65(3): 311-321. [31] Bae Y S, Lee C H.Partial-discard strategy for obtaining high purity products using simulated moving bed chromatography[J]. Journal of Chromatography A, 2006, 1122(1/2): 161-173. [32] Keßler L C, Seidel-Morgenstern A.Improving performance of simulated moving bed chromatography by fractionation and feed-back of outlet streams[J]. Journal of Chromatography A, 2008, 1207(1/2): 55-71. [33] Ludemann-hombourger Olivier, Nicoud Roger Marc. Process and device for separation with variable-length chromatographic zones: US, 6712973[P].2004-03-30. [34] Yan Zhang, Kus Hidajat, Ajay K Ray.Enantio-separation of racemic pindolol on α1-acid glycoprotein chiral stationary phase by SMB and Varicol[J]. Chemical Engineering Science. 2007, 62(5): 1364-1375. |