[1] Nishikawa T, Araki E.Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications[J]. Antioxid Redox Signal, 2007, 9(3): 343~353. [2] Thallas-Bonke V, Thorpe SR, Coughlan MT, et al. Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway[J]. Diabetes, 2008, 57(2): 460~469. [3] Sakai N, Wada T, Furuichi K, et al. Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy[J]. Am J Kidney Dis, 2005, 45(1): 54~65. [4] Prasad S, Kaur J, Roy P, et al. Theaflavins induce G2/M arrest by modulating expression of p21waf1/cip1, cdc25C and cyclin B in human prostate carcinoma PC-3 cells[J]. Life Sci, 2007, 81(17-18):1323~1331. [5] Cai F, Li C, Wu J, Min Q, et al. Modulation of the oxidative stress and nuclear factor kappaB activation by theaflavin 3,3'-gallate in the rats exposed to cerebral ischemia-reperfusion[J]. Folia Biol (Praha), 2007, 53(5):164~172. [6] Yang CS, Landau JM.Effects of tea consumption on nutrition and health[J]. J Nutr, 2000, 130(10): 2409~2412. [7] Makita Z, Vlassara H, Cerami A, Bucala R.Immunochemical detection of advanced glycosylation end products in vivo[J]. J Biol Chem, 1992, 15267(8): 5133~5138. [8] Sen P, Chakraborty PK, Raha S.p38 mitogen-activated protein kinase (p38MAPK) upregulates catalase levels in response to low dose H2O2 treatment through enhancement of mRNA stability[J]. FEBS Lett, 2005, 579(20): 4402~4406. [9] 江和源, 袁新跃, 王川丕. 茶黄素双没食子酸酯的抗癌活性及其作用机理研究[J]. 茶叶科学, 2007, 27(1): 33~38. [10] 王文祥, 苏畅, 廖惠珍. 茶色素对胰岛素抵抗大鼠胰岛素受体的影响[J]. 茶叶科学, 2008, 28(6): 455~458. [11] Luczaj W, Skrzydlewska E.Antioxidative properties of black tea[J]. Prev Med, 2005, 40(6): 910~918. [12] Park AM, Dong Z.Signal transduction pathways: targets for green and black tea polyphenols[J]. J Biochem Mol Biol, 2003, 36(1): 66~77. |