[1] Barua D N.Seasonal dormancy in tea(Camellia sinensis L.)[J]. Nature, 1969(224): 514. [2] Das S C, Barua D N.Mechanism of tea dormancy effect of temperature on growth and dormancy of tea plant in north east India[J]. Two and A Bud, 1987(34): 36-41. [3] Nagar P K.Changes in endogenous abscisic acid and phenols during winter dormancy in tea (Camellia sinensis (L.) O. Kuntze)[J]. Acta Physiologiae Plantarum, 1996, 18(1): 33-38. [4] Kakkar R K, Nagar P K.Distribution and changes in endogenous polyamines during winter dormancy in tea (Camellia sinensis (L.) O Kuntze)[J]. Journal of Plant Physiology, 1997, 151(1): 63-67. [5] Nagar P K, Shweta S.Changes in endogenous auxins during winter dormancy in tea (Camellia sinensis (L.) O. Kuntze)[J]. Acta Physiologiae Plantarum, 2006, 28(2):165-169. [6] Vyas D, Kumar S, Ahujia P S.Tea (Camellia sinensis) clones with shorter periods of winter dormancy exhibit lower accumulation of reactive oxygen species[J]. Tree Physiology, 2007, 27(9): 1253-1259. [7] Kuhn E.From library screening to microarray technology: strategies to determine gene expression profiles and to identify differentially regulated genes in plants[J]. Annals of Botany, 2001, 87(2): 139-155. [8] Diatchenko L, Lau Y F, Campbell A P, et al. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries[J]. Proceedings of National Academy of Sciences of the United States of America, 1996, 93(12): 6025-6030. [9] Gadgil C, Rink A, Beattie C, et al. A mathematical model for suppression subtractive hybridization[J]. Comparative and Functional Genomics, 2002, 3(5): 405-422. [10] 董霞, 李文正, 刘世贵. 抑制消减杂交技术及其在植物基因表达研究中的应用[J]. 植物生理学通讯, 2006, 42(3): 515-522. [11] Park J S, Kim J B, Hahn B S, et al. EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea), using suppression subtractive hybridization[J]. Plant Science, 2004, 166(4): 953-961. [12] Stevens R, Goble C, Baker P, et al. A classification of tasks in bioinformatics[J]. Bioinformatics, 2001, 17(2): 180-188. [13] Mulder N J, Apweiler R, Attwood T K, et al. The InterPro Database: 2003 brings increased coverage and new features[J]. Nucleic Acids Research, 2003, 31(1): 315-318. [14] Ye J, Fang L, Zheng H, et al. WEGO: a web tool for plotting GO annotations [J/OL]. Nucleic Acids Research, 2006, 34: 293~297[2010-04-10]. http://nar.oxfordjournals. [15] Arora R, Rowland L J, Tanino K.Induction and release of bud dormancy in woody perennials: a science comes of age[J]. HortScience, 2003, 38(5): 911-921. [16] Horvath D P, Anderson J V, Chao W S, et al. Knowing when to grow: signals regulating bud dormancy[J]. Trends Plant Science, 2003, 8(11): 534-540. [17] Pacey-Miller T, Scott K, Ablett E, et al. Genes associated with the end of dormancy in grapes[J]. Functional and Integrative Genomics, 2003, 3(4): 144-152. [18] Jia Y, Anderson J V, Horvath D P, et al. Subtractive cDNA libraries identify differentially expressed genes in dormant and growing buds of leafy spurge (Euphorbia esula)[J]. Plant Molecular Biology, 2006, 61(1-2): 329-344. [19] Mazzitelli L, Hancock R D, Haupt S, et al. Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds[J]. Journal of Experimental Botany, 2007, 58(5): 1035-1045. [20] Park S, Keathley D E, Han K H.Transcriptional profiles of the annual growth cycle in Populus deltoids[J]. Tree Physiology, 2008, 28(3): 321-329. [21] Rohde A, Ruttink T, Hostyn V, et al. Gene expression during the induction, maintenance, and release of dormancy in apical buds of poplar[J]. Journal of Experimental Botany, 2007, 58(15-16): 4047-4060. [22] Keilin T, Pang X, Venkateswari J, et al. Digital expression profiling of a grape-bud EST collection leads to new insight into molecular events during grape-bud dormancy release[J]. Plant Science, 2007, 173(4): 446-457. |